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Раздел 1 
 

Обыкновенные дифференциальные уравнения 

 
 

ЗАНЯТИЕ № 1 
 

Тема: Понятие дифференциального уравнения.  

Задача Коши и теорема о существовании и единственности решения  

для дифференциальных уравнений 1-го порядка 
 

I. ОСНОВНЫЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ 
 

1.1. Понятие дифференциального уравнения. Порядок и решение 
дифференциального уравнения. Задачи, приводящие к дифференциальным 

уравнениям. Очень часто проблемы, возникающие в различных областях науки 

и техники, изучаются с помощью описания основных характеристических 
количественных соотношений между параметрами, свойственными 

рассматриваемой проблеме (т.е. с помощью построения ее математической 
модели). Обычно эти соотношения представляют собой одну или несколько 
функциональных зависимостей между переменными величинами, 

характеризующими изучаемое явление. Но во многих случаях эти 

функциональные зависимости удаются установить, лишь решив одно или 

несколько уравнений между искомыми функциями и их производными. 

Дифференциальным уравнением называется уравнение относительно 
неизвестной функции, еë производных различных порядков и независимых 
переменных. При этом дифференциальное уравнение обязательно должно 
содержать производные искомой функции.

1
 

Если в дифференциальном уравнении искомая функция зависит лишь от 
одной переменной, то такое уравнение называется обыкновенным, в противном 

случае оно называется уравнением с частными производными. 

Всюду в дальнейшем, говоря о дифференциальных уравнениях, мы будем 

иметь в виду обыкновенные дифференциальные уравнения, если противное не 
оговорено особо. 

Порядком дифференциального уравнения называется порядок наивысшей 

производной, неформально входящей в уравнение. 
Обыкновенное дифференциальное уравнение n-го порядка в общем виде 

записывается так: 

                                     0)...,,'',',,( )(
=

n
yyyyxF ,                                        (1.1) 

 

                                                
1
 Всюду в настоящем пособии, где не оговорено противное, предполагается, что как независимые 

переменные, так и искомые функции являются вещественными. 
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где x  – независимая переменная; )(xyy =  – искомая функция переменной x ; 

)(...,,'',' n
yyy  – еë производные; )...,,'',',,( )(n

yyyyxF  – заданная функция своих 

аргументов. 

Пусть ba,  - связное множество на R, т.е. числовой промежуток. 

ОПРЕДЕЛЕНИЕ 1.1. Функция )(xy ϕ= , определенная на промежутке 

ba, , называется решением дифференциального уравнения (1.1) на этом 

промежутке, если выполняются следующие три условия:  

1) Функция )(xy ϕ=  n  раз дифференцируема на промежутке ba,
2
; 

2) для любого bax ,∈  точка ( ) )()(...,),('),(, )(
FDxxxx

n ∈ϕϕϕ , где )(FD  – 

область определения функции F ; 

3) функция )(xy ϕ= , будучи подставлена в уравнение (1.1), обращает его 

в тождество на ba, , т.е. 0))(...,),('),(,( )( ≡xxxxF
nϕϕϕ , bax ,∈ . 

Например, функция xy sin=  является решением дифференциального 

уравнения 0'' =+yy  на промежутке ),( ∞+−∞ , так как эта функция дважды 

дифференцируема на данном промежутке и 0sin')'(sin ≡+ xx  на ),( ∞+−∞ . 

Нетрудно проверить, что всякая функция вида xCxCy cossin
21

+= , где 
21

, CC  - 

произвольные постоянные из R, также будет решением уравнения 0'' =+yy  на 

промежутке ),( ∞+−∞ . 

Таким образом, дифференциальное 
уравнение может иметь на данном 

промежутке много решений (даже 
бесконечное множество решений). 

Часто операцию отыскания решений 

дифференциального уравнения называют 
интегрированием уравнения, а график 
всякого конкретного решения 
дифференциального   уравнения называют 
интегральной кривой.  

Замечание 1.1. Существенно, что 
областью определения решения 

обыкновенного дифференциального 
уравнения служит связное множество на R. Например, ветвь графика функции 

                                                
2
 В случае, когда функция  определена на промежутке, замкнутом с одного или с обоих концов 

(т.е. если 〉〈 ba,  есть один из интервалов вида: , , ), то под дифференцируемостью функции 

 на конце промежутка мы понимаем существование соответствующей односторонней производной. 

)(ty ϕ=

),[ ba ],( ba ],[ ba

)(tϕ

                   Рис. 1.1 
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x
x

−
=

5

1
)(ϕ , определенная на промежутке )5,(−∞  (см. рис. 1.1), и ветвь графика 

функции 
x

x
−

=
5

1
)(ϕ , определенная на промежутке ),5( ∞+ , мы будем 

рассматривать как две различные интегральные кривые дифференциального 

уравнения 2
' yy = . 

Основной задачей теории дифференциальных уравнений является 
развитие точных и приближенных методов интегрирования дифференциальных 
уравнений различных классов и исследование общих свойств решений этих 
уравнений. 

Далее рассмотрим несколько проблем из различных областей науки, 

исследование которых приводит к поиску решений тех или иных 
дифференциальных уравнений. 

Задача 1.1. Скорость распада радия в каждый момент времени прямо 
пропорциональна его наличной массе. Составить дифференциальное уравнение, 
которое позволит найти закон распада радия. Определить массу радия в 
произвольный момент времени t , если в начальный момент времени 0=t  

имелось 
0

m  кг  радия, а период полураспада радия3
 составляет 1590 лет. 

РЕШЕНИЕ. Пусть в момент времени t  масса радия составляет )(ty  кг. 

Тогда согласно условию задачи, получим искомое дифференциальное уравнение 

ky
dt

dy
−= , 

где 0>k  – коэффициент пропорциональности. Но поскольку 0)( ≠ty , то 

полученное дифференциальное уравнение можно переписать так: k
y

y
−=

'
 или 

( ) ky −='ln . С помощью интегрирования отсюда находим: 
1

ln Ckty +−= , где 
1

C – 

произвольная постоянная. Тогда ktCety −
=)( , где 1C

eC = . Для определения 

значения постоянной C  используем «начальное условие»: 
00

my
t

==
. В силу 

этого начального условия имеем: 
0

mC =  и, значит, ktemty −
= 0)( . Наконец, 

значение коэффициента пропорциональности k  определяем из условия, что 

период полураспада радия равен 1590 лет, т.е. 
2

0

1590

m
y t ==  или .

2

01590

0

m
em

k
=

⋅−
 

                                                
3
 Период полураспада радия – период времени, по истечении которого распадается половина наличной 

массы радия. 
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Отсюда находим: 2ln
1590

1
=k . Следовательно, масса радия в момент времени t  

можно определить по формуле:  1590

0
2)(

t

mty

−

⋅= .► 

 

Задача 1.2. Пуля движется по оси OX  равномерно ускоренно, то есть с 
ускорением, равным a . Составить дифференциальное уравнение, решив которое, 
можно определить закон движения пули. 

РЕШЕНИЕ. Предположим, что искомый закон движения пули 

определяется функцией )(txx = . Поскольку ускорение определяется как вторая 

производная функции )(tx , то согласно условию задачи будем иметь: 

a
dt

xd
=

2

2

.► 

 

Задача 1.3. Из статистических данных известно, что для рассматриваемого 
региона число новорожденных и число умерших за единицу времени 

пропорциональны численности населения с коэффициентами 

пропорциональности 1
r  и 2
r . Требуется составить дифференциальное уравнение, 

из которого определяется закон изменения численности населения с течением 

времени. 

РЕШЕНИЕ. Пусть )(ty  – число жителей региона в момент времени t . 

Прирост населения yΔ  за время tΔ  равен разности между числом родившихся и 

умерших за это время, т.е.  

tyrtyry Δ−Δ=Δ
21

  или  ky
t

y
=

Δ

Δ
, 

где 
21

rrk −= . Отсюда, переходя к пределу при 0→Δt , получаем искомое  

дифференциальное уравнение: 

ky
dt

dy
= .► 

 

Замечание 1.2. Важно заметить, что одно и то же дифференциальное 
уравнение может описать различные явления природы (например, сравните 
задачи 1.1 и 1.3). 

 

1.2. Задача Коши4
 и теорема о существовании и единственности 

решения для дифференциальных уравнений 1-го порядка. В общем случае 
дифференциальное уравнение 1-го порядка может быть записано так: 

 

                                                    0)',,( =yyxF ,                                            (1.2) 
 

                                                
4
 Огюстен Луи Коши (1789-1857) – французский математик. 
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где )',,( yyxF  - заданная функция своих аргументов. 

Обычно дифференциальное уравнение (1.2) называют уравнением, 

неразрешенным относительно производной. Если же его можно разрешить 

относительно 'y , то оно приводится к более простому виду  
 

                                               ),(' yxfy = ,                                                     (1.3) 

где ),( yxf  - заданная функция двух переменных x и y, а 
dx

dy
y =' . 

Уравнение вида (1.3) называют дифференциальным уравнением 1-го 

порядка, разрешенным относительно производной. 

Например, уравнение 0')1( 2
=−+ yyx  не разрешено относительно 'y . 

Разрешив его относительно 'y , получим уравнение 
1

'
2
+

=
x

y
y . 

Вообще говоря, дифференциальное уравнение вида (1.3) может иметь 
бесконечное множество различных решений. Поэтому, когда интересуются 
конкретным решением дифференциального уравнения, указываются 
дополнительные условия, выделяющие искомое решение из множества всех 
решений данного уравнения. Для уравнения (1.3) таким условием, в частности, 

является так называемое начальное условие: 

                                               
0

0

yy
xx
=

=
,                                                   (1.3а) 

где 0
x  и 0

y  - некоторые фиксированные числа. При этом числа 0
x  и 0

y  

называются начальными данными для уравнения (1.3). 

ОПРЕДЕЛЕНИЕ 1.2. Задача, состоящая в отыскании решения 

дифференциального уравнения (1.3), удовлетворяющего начальному условию 

(1.3а), называется задачей Коши для этого уравнения. 

Геометрически задачу Коши можно сформулировать так: среди всех 
интегральных кривых дифференциального уравнения (1.3) найти ту, которая 

проходит через точку ),( 000 yxP . 

Естественно возникает вопрос: всегда ли существует решение задачи 

Коши для уравнения (1.3) и если существует, то будет ли оно единственным ? 

Ответ на этот вопрос для достаточно широкого класса дифференциальных 
уравнений вида (1.3) дает следующая теорема (см. также, например, [23, с. 34]). 

 

Теорема Коши (о существовании и единственности решения). Пусть дано 

дифференциальное уравнение (1.3) и пусть функция ),( yxf  и еë частная 

производная ),(' yxf y  непрерывны во всех точках некоторой области 2
R⊆G . 

Тогда для каждой точки ),( 000 yxP  области G  найдется интервал ),( 00 hxhx +−  
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оси OX, на котором существует, и притом единственное, решение )(xy ϕ=  

дифференциального уравнения (1.3), удовлетворяющее начальному условию 

(1.3а) (т.е. принимающее значение 0
y  при 

0
xx = ). 

Замечание 1.1. Отметим, что первое доказательство сформулированной 

теоремы было дано самим Коши, а в несколько усиленной форме эту теорему 
затем доказал Пикар5

. Ниже мы будем строить ее доказательство так, чтобы 

сразу можно было обнаружить тот факт, что теорема Коши непосредственно 
вытекает из известной в теории метрических пространств теоремы Банаха6

: 

Всякое сжимающее отображение F полного метрического пространства М в 

себя имеет, и притом единственную, неподвижную точку (см., например, [6], с. 
84). 

ДОКАЗАТЕЛЬСТВО ТЕОРЕМЫ КОШИ. Сначала заметим, что задача 
Коши (1.3) и (1.3а) (т. е. дифференциальное уравнение (1.3) вместе с начальным 

условием (1.3а)) равносильна следующему интегральному уравнению 

                                         ∫+=

x

x

dttytfyy

0

))(,(0 ,                                          (1.4) 

где )(xyy =  - искомая функция. 

Действительно, пусть функция )(xy ϕ=  на некотором интервале ),( βα  

удовлетворяет интегральному уравнению (1.4), т. е. имеет место тождество: 

                                 ∫ ∈+≡
x

x

xdtttfyx

0

),(,))(,()( 0 βαϕϕ .                             (1.5) 

Подставив 
0

xx = , из (1.5) получаем 00 )( yx =ϕ . Итак, функция )(xy ϕ=  

удовлетворяет начальному условию (1.3а). Чтобы проверить, что функция )(xy ϕ=  

является решением дифференциального уравнения (1.3), достаточно 
продифференцировать обе части (1.5) по x : 

 

                                     ),()),(,()(' βαϕϕ ∈≡ xxxfx .                                           (1.6) 
 

Наоборот, пусть )(xy ϕ=  - решение задачи Коши (1.3), (1.3а) на некотором 

промежутке ),( βα . Тогда имеет место тождество (1.6). Беря интегралы от обеих 

частей тождества (1.6) (в пределах от 0
x  до x , где 0

x - фиксированная точка 

интервала ),( βα , а x  - произвольная точка этого интервала), получим 

                                    ∫≡−
x

x

dtttfxx

0

))(,()()( 0 ϕϕϕ .                                        (1.7) 

                                                
5
 Эмиль Пикар (1856–1941) - французский математик. 

6
 Стефан Банах (1892–1945) - польский математик. 
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Но так как функция )(xy ϕ=  удовлетворяет начальному условию (1.3а), то 

из (1.7) будем иметь тождество (1.5), т.е. )(xy ϕ=  является решением 

интегрального уравнения (1.4). 

Таким образом, для доказательства данной теоремы остается показать, что 

интегральное уравнение (1.4) на некотором интервале ),( 00 hxhx +−  имеет 

решение, и притом единственное. 
Далее будем доказывать, что при выполнении условий теоремы Коши 

интегральное уравнение (1.4) действительно имеет единственное решение. 

Поскольку точка ),( 000 yxP  - внутренняя для области G, то найдется 

некоторый прямоугольник  

     
⎩
⎨
⎧

+≤≤−

+≤≤−

,

,
:

00

00

byyby

axxax
D  

во всех точках которого непрерывны 

функции ),( yxf  и ),(' yxf y  (см. рис. 1.2). 

Так как D — замкнутая и 

ограниченная область, то, согласно 

теореме Вейерштрасса, функции ),( yxf  и 

),(' yxf y  ограничены в D и, 

следовательно, 

KyxfLyxf y ≤≤ ),(',|),(| , 

где |),(|max yxfL
D

= , |),('|max yxfK y
D

= . 

Далее, выберем на оси абсцисс отрезок ],[ 00 hxhx +−  так, чтобы 

положительное число h удовлетворяло одновременно следующим трем 

условиям: 1) ah < ; 2) 
L

b
h < ;  3) 

K
h

1
< . 

Введем теперь ради краткости обозначения hxc −=
0

, hxd +=
0

 и 

рассмотрим полное метрическое пространство ];[ dc
C , состоящее из всех 

непрерывных на отрезке ];[ dc  функций, где расстояние между произвольными 

элементами ];[, dcCg ∈ϕ  определяется по формуле: |)()(|max),( xxgg
dxc

ϕϕρ −=
≤≤

. 

Пусть M  - подмножество функций )(xyy =  пространства ];[ dc
C , 

удовлетворяющих на отрезке ];[ dc  неравенству 
 

                                            byxy ≤− |)(| 0 .                                                     (1.8) 
 

 

 

 

  

 

  

 

 

Рис. 1.2 
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Очевидно, что множество М образует  замкнутый шар  в пространстве ,];[ dc
C  

следовательно, как и всякая замкнутая часть полного метрического пространства 

];[ dc
C , само множество М является полным метрическим пространством. 

Наконец, рассмотрим отображение F, определяемое формулой: 

                                    ∫+→
x

x

dttytfyxyF

0

))(,()(: 0
.                                     (1.9) 

Покажем, что F - сжимающее отображение полного метрического 

пространства М в себя. Действительно, пусть )(xyy =  - произвольная функция из 

М (т.е. )(xy  непрерывна на ];[ dc  и удовлетворяет неравенству (1.8)), а 

)(xzz =  - образ функции )(xy  при отображении F: 

∫+=
x

x

dtytfyxz

0

),()( 0
. 

Так как интеграл с переменным верхним пределом от непрерывной 

функции является дифференцируемой функцией, то образ z  любой функции 

My∈  будет функцией непрерывной на ];[ dc . Кроме того, при любом ];[ dcx∈  

имеет место неравенство: 

bLhxxLdtLdtytfyxz
x

x

x

x

<≤−=≤=− ∫∫ ||),(|)(| 00

00

, 

т.е. byxz ≤− |)(| 0 . Таким образом, F отображает М в себя. Более того, F является 

сжимающим отображением. В самом деле, пусть )(1 xy  и )(2 xy  две 

произвольные функции из M , и пусть 

∫∫ +=+=
x

x

x

x

dtytfyxzdtytfyxz

00

),()(,),()( 202101 . 

Тогда будем иметь: 

                             ∫ −≤−
x

x

dtytfytfxzxz

0

|),(),(||)()(| 1211 .                            (1.10) 

Так как ),(' yxf y  непрерывна в D , то в силу теоремы Лагранжа7
 имеем: 

.|),('|maxгде),,(|)()(|max

|||)(),('||),(),(|

1212

121212

yxfKyyKxyxyK

yyKyyyxfyxfyxf

y
Ddxc

y

=≤−≤

≤−≤−⋅=−

≤≤
ρ

 

С учетом последнего неравенства и неравенства (1.10), получаем: 

≤−=−= ∫
≤≤≤≤

x

x
dxcdxc

dtytfytfxzxzyFyF

0

|),(),(|max|)()(|max))(),(( 121212ρ  

                                                
7
 Жозеф Луи Лагранж (1736-1813) – французский математик. 
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),,())(),((е.т.),,(),( 12121212

0

yyyFyFyyKhdtyyK

x

x

λρρρρ ≤≤≤ ∫  

где Kh=λ . Но в силу неравенства 
K

h
1

<  имеем: 1<λ . Итак, отображение F 

является сжимающим. Тогда, согласно теореме Банаха, отображение 

MMF →:  имеет, и притом единственную, неподвижную точку, т.е. существует 

единственная функция )(xy ϕ=  из множества М такая, что 

];[,))(,()(

0

0 dcxdtxtfyx
x

x

∈+≡ ∫ ϕϕ . Теорема полностью доказана. ► 

Замечание 1.2. Теорема Коши имеет локальный характер: она гарантирует 
существование единственного решения )(xy ϕ=  задачи Коши лишь в достаточно 

малой окрестности точки 0
x . Более того, эта теорема указывает достаточные 

условия существования и единственности решения задачи Коши. 

 

Пример 1.1. Найти область, в которой выполняются условия теоремы 

Коши для дифференциального уравнения yxy −=' . 

РЕШЕНИЕ. Здесь yxyxf −=),( , 
yx

yxf y
−

−=
2

1
),(' . Очевидно, что 

функции ),( yxf  и ),(' yxf y  определены и непрерывны в области 

}0),{( 2
>−∈= yxyxG R , т.е. в полуплоскости xy < .► 

 

1.3. Понятие общего, частного и особого решений дифференциального 
уравнения 1-го порядка. Из теоремы Коши следует, что если в некоторой 

области 2
R⊆G  непрерывны функции ),( yxf  и ),(' yxf y , то в такой области G  

выполняется следующее важное условие: любые два решения уравнения (1.3), 

определенные на промежутке >< βα ,  и принимающие одинаковые значения при 

некотором >∈< βα ,0x , совпадают на всем промежутке >< βα , . Другими словами, 

через каждую из точек ),( 000 yxP , ),( 111 yxP , …, ),( nnn yxP  и т.д., принадлежащих 

области G , проходит одна и только одна интегральная кривая  данного 
дифференциального уравнения вида (1.3). Обычно про такую область говорят, 
что она является областью единственности решения данного 
дифференциального уравнения. 

Пусть G  является областью единственности решения для 
дифференциального уравнения (1.3).  



12 

 

ОПРЕДЕЛЕНИЕ 1.3. Общим решением дифференциального уравнения 

(1.3) в области G  называется функция ),( Cxy ϕ= 8
, зависящая от одной 

произвольной постоянной C и удовлетворяющая следующим условиям: 

1) при любом допустимом значении C функция ),( Cxy ϕ=  является 

решением дифференциального уравнения (1.3) на некотором числовом 

промежутке ba,  (т.е. )),(,(),(' CxxfCxx ϕϕ ≡  для всех bax ,∈ ); 

2) для любой точки ),( 000 yxP  области G  можно подобрать такое 

значение C0 постоянной C, что решение ),( 0Cxy ϕ=  удовлетворяет начальному 

условию вида (1.3а), т.е. 000 ),( yCx =ϕ . 

Нетрудно проверить, что семейство функций вида )exp( 2
xCy = , где C – 

произвольная постоянная, является общим решением дифференциального 
уравнения xyy 2'=  в R2

. 

ОПРЕДЕЛЕНИЕ 1.4. Частным решением дифференциального уравнения 

(1.3) называется всякая функция ),( 0Cxy ϕ= , которая получается из общего 

решения ),( Cxy ϕ=  при каком-либо конкретном значении произвольной 

постоянной 
0

CC =  (включая значения ±∞=
0

C ). 

Важно также отметить, что в процессе отыскания общего решения 
дифференциального уравнения (1.3) очень часто приходим к уравнению вида  

 

                                                   0),,( =CyxU ,                                             (1.11) 
 

неявно задающему общее решение данного дифференциального уравнения. 
ОПРЕДЕЛЕНИЕ 1.5. Уравнение вида (1.11), неявно задающее общее 

решение дифференциального уравнения (1.3), называется общим интегралом 

уравнения (1.3). Уравнение 0),,( 0 =CyxU , которое получается из общего 

интеграла при конкретном значении произвольной постоянной 
0

CC = , 

называется частным интегралом  данного дифференциального уравнения. 

Например, нетрудно проверить, что уравнение 222
Cyx =+ , где C – 

произвольная постоянная, является общим интегралом  уравнения 
y

x
y −=' . 

Наконец, введем ещë понятие особого решения дифференциального 
уравнения. Для этого рассмотрим дифференциальное уравнение  

                                                     3

2

3' yy = ,                                                 (1.12) 
 

                                                
8
 Здесь  на самом деле представляет собой семейство функций переменного x, задаваемое 

параметром C (параметр C в теории дифференциальных уравнений принято называть произвольной 

постоянной). 

),( Cxy ϕ=
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где )(xyy =  - искомая функция. 

Непосредственная проверка показывает, что всякая функция вида 
3)( Cxy += , где C – 

произвольная постоянная, 
является решением 

дифференциального уравнения 
(1.12) на промежутке ),( ∞+−∞ . 

Кроме того, очевидно, что 

функция 0)( ≡xy  также 

является решением уравнения 
(1.12) на промежутке ),( ∞+−∞ .  

Легко заметить (см. рис. 
1.3), что через каждую точку 

)0,( 00 xM  интегральной кривой 

0=y  проходит ещë одна интегральная кривая 3
0 )( xxy −=  данного 

дифференциального уравнения (1.12), т.е. в каждой точке )0,( 00 xM  

интегральной кривой 0=y  нарушается единственность решения задачи Коши. 
 

ОПРЕДЕЛЕНИЕ 1.6. Решение )(xy ψ=  дифференциального уравнения 

называется особым, если через любую точку изображающей его интегральной 

кривой проходит по крайней мере ещë одна интегральная кривая того же 

уравнения. 

Согласно данному опреде-
лению 0=y  является особым 

решением для уравнения (1.12). 

Отметим, что в отличие от 
частного решения особое решение 
не может быть получено из 
формулы общего решения 

),( Cxy ϕ=  при каком-либо 

конкретном числовом значении 

произвольной постоянной C. 

Очень часто особое решение 
дифференциального уравнения 
(1.3) получается как геометрическое место точек, где нарушаются условия 
теоремы Коши, т.е. как множество точек R2

, в которых терпит разрыв хотя бы 

одна функция ),( yxf  или ),(' yxf y . 

                              Рис. 1.3 

                            Рис. 1.4 
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Таким образом, среди конкретных решений дифференциальных уравнений 

(т.е. решений, не являющихся общими) следует различать частные решения и 

особые решения. Однако важно заметить, что множество частных и особых 
решений не охватывает всех возможных конкретных решений 

дифференциальных уравнений. Так, например, функция вида (см. рис. 1.4) 
 

                                         
⎩
⎨
⎧

>

≤
=

,0,

,0,0

3
xприx

xпри
y                                               (1.13) 

 

является дифференцируемой на промежутке ),( ∞+−∞  и удовлетворяет на нем 

дифференциальному уравнению (1.12), т.е. является решением уравнения (1.2) 

на промежутке ),( ∞+−∞ . Вместе с тем, решение (1.13) нельзя считать ни 

частным, ни особым решением уравнения (1.12) (так как решение (1.13) – 

«гибрид» из частного решения и особого решения). Всюду в дальнейшем (при 

интегрировании дифференциальных уравнений) будем искать только общие 
решения, частные решения и особые решения, а решения вида (1.13) (т.е. 
«гибридного происхождения») мы не будем рассматривать. 

Замечание 1.3. В связи с принятым выше соглашением, задачу типа 
«решить данное дифференциальное уравнение» в дальнейшем нужно понимать 
так, что требуется найти все решения данного уравнения, кроме решений 

«гибридного происхождения». 
 

II. КОНТРОЛЬНЫЕ ВОПРОСЫ И ЗАДАНИЯ 
 

1. Дайте определение дифференциального уравнения. Когда 
дифференциальное уравнение называется обыкновенным ? 

2. Что называется порядком дифференциального уравнения ? Каков 

порядок дифференциального уравнения 0)'''sin(3' =− xyyy ? 

3. Каков общий вид обыкновенного дифференциального уравнения n-го 
порядка ? 

4. Дайте определение решения обыкновенного дифференциального 
уравнения n-го порядка. 

5. Что называется интегральной кривой обыкновенного 

дифференциального уравнения ),( yxf
dx

dy
= ? 

6. В чем состоит задача Коши для дифференциального уравнения 

),( yxf
dx

dy
= ?  

7. Сформулируйте теорему о существовании и единственности решения 

задачи Коши для уравнения ),( yxf
dx

dy
= . 
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8. Что называется областью единственности решения  

дифференциального уравнения ),( yxf
dx

dy
= ? 

9. Дайте определение общего решения (общего интеграла) 

дифференциального уравнения ),( yxf
dx

dy
= . 

10. Что называется частным решением (частным интегралом) 

дифференциального уравнения ),( yxf
dx

dy
= ?  

11. Дайте определение особого решения обыкновенного 
дифференциального уравнения. 

 

 

III. ПРИМЕРЫ И ЗАДАЧИ ДЛЯ АУДИТОРНОЙ РАБОТЫ 
 

1.1. Какие из следующих уравнений являются дифференциальными:  

         а) 05
2

=− yx ;                                      б) 0''3 =+yy ; 

         в) 0
),(

7
),( 2

=
∂∂

∂
−

∂

∂

yx

yx

x

yx φφ
;                  г) 0),,( =Φ zyx ? 

 

1.2. Проверьте, являются ли следующие функции решениями для 
указанного дифференциального уравнения (C – произвольная постоянная): 

         а) xyyСxy =+= ',
2 ; 

         б) xxyxydt
t

t
xy

x

sin',
sin

0

+== ∫ ; 

          в) 1')1(, =+−+= yyxCexy
y

; 

          г) 
⎩
⎨
⎧

+=

=

),1ln2(

,ln

2
tty

ttx
x

y
y 4

4

'
ln' = . 

 

1.3. Пусть )(xfy =  - интегральная кривая дифференциального уравнения 

xxyy ln)1cos(' +−= , проходящая через точку )3;1(M . Найдите )1(''),1(' ff . 
 

1.4. Проверьте, является ли семейство функций  ⎟
⎠

⎞
⎜
⎝

⎛

+
−=

Cx

xу
ln

1
1 , где C – 

произвольная постоянная, общим решением  дифференциального  уравнения  

1'
2

2

+−=
x

y

x

y
y  в полуплоскости   },0),{( 2

+∞<<∞−>∈=+ yxRyxG . Будет ли 

функция xy =  особым решением данного дифференциального уравнения ? 
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1.5. Зная общие решения (общие интегралы) некоторых 
дифференциальных уравнений, найдите их частные решения (частные 
интегралы), удовлетворяющие заданным начальным условиям: 

       а) 3,
2

2
==

=x
yCxy ;               б) ,ln)(ln2

Cxyyx =++  ;1
1

−=
=

ey
x

 

        здесь e  - основание натурального логарифма. 
 

1.6. Найдите геометрические места стационарных точек для интегральных 
кривых следующих дифференциальных уравнений: 

         а) 9'
2

−+= yyxy ;       б) 4'
22
−=

x
eyy ;          в) 1sin'

63
−= xyy . 

 

1.7. Известно, что семейство функций 3)( Cxxу ++= , где C – 

произвольная постоянная, является общим решением дифференциального 

уравнения 3
1

)(
2

3
1 xy

dx

dy
−+=  в полуплоскости }),{( 2

1 xyRyxG >∈= . Будет ли 

функция xy =  особым решением данного дифференциального уравнения? 

 

IV. ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ 
 

1.8. Какие из следующих уравнений являются дифференциальными:  

        а) 2)'(' yxyy −= ;                                б) 03
2

=+ yy ; 

        в) 0
),(),(

2

2

2

2

=
∂

∂
−

∂

∂

y

yx

x

yx φφ
;              г) 1

22
=+ yx ? 

 

1.9. Проверьте, являются ли для заданного дифференциального уравнения 
следующие функции его решениями (C – произвольная постоянная): 

         а) 222
2,0'2 xCxyxyyxy −==−− ; 

         б) 
x

x
txxx Cedteeyeyy +==− ∫

+

0

22

,' ; 

         в) Cx
eyytgyxy

arcsin),(ln' =⋅= . 
 

1.10. Зная общие решения (общие интегралы) дифференциальных 
уравнений, найдите их частные решения (частные интегралы), удовлетворяющие 
заданным начальным условиям: 

         а) 5,2
1

22
==+

−=x
yCyx ;                   б) .5,

0

0

−=+=
=∫ x

x t

yCdt
t

e
y  

 

1.11.  Найдите точки, являющиеся стационарными для проходящих через 
них интегральных кривых дифференциальных уравнений 

 

         xyyxy 344' −+=   и  26'
22
−+++= yxyxy . 



17 

 

ЗАНЯТИЕ № 2 
 

Тема: Линейные дифференциальные уравнения 1-го порядка. 
Уравнение Бернулли 

 

I. ОСНОВНЫЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ 
 

2.1. Дифференциальные уравнения 1-го порядка, явно не содержащие 
искомой функции. Если общее решение (или общий интеграл) данного 
дифференциального уравнения может быть получено с помощью конечного 

числа элементарных операций над функциями, входящими в уравнение, а также 
с помощью интегрирования этих функций и построения суперпозиций, то про 
такое уравнение говорят, что оно интегрируется в квадратурах. 

Одним из простейших дифференциальных уравнений 1-го порядка, 
интегрируемых в квадратурах, является уравнение вида 

 

                                                   )(' xQy = ,                                                      (2.1) 
 

где )(xQ  - заданная и непрерывная на интервале ),( ba  функция. 

Из интегрального исчисления известно (см., например, [11], Ч. I, с. 185), 

что все решения уравнения (2.1) задаются формулой 
 

                                                     CdxxQy += ∫ )( ,                                              (2.2) 

 

где С - произвольная постоянная, а под 

символом ∫ dxxQ )(  понимается какая-нибудь 

конкретная (фиксированная) первообразная 
для функции )(xQ . 

Нетрудно проверить, что формулой (2.2) 

задается общее решение уравнения (2.1) в 

области { }+∞<<∞−<<= ybxayx, ,)(П  (см. 

рис. 2.1). 

В самом деле, возьмем в качестве 
первообразной )(xΦ  для функции )(xQ  

определенный интеграл с переменным верхним 

пределом ∫=Φ∈
x

x

xxQxbax

0

,d )()(:),(  где 0x  - некоторая фиксированная точка из 

интервала ),( ba . Тогда формула (2.2) примет вид:  

                                                       CdxxQy
x

x

+= ∫
0

)( ,                                                (2.3) 

где С - произвольная  постоянная. 

Y 

X b a 

P0 

y = y(x) 

П 

0 

               Рис. 2.1 
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Далее заметим, что, во-первых, всякая функция вида (2.3) является 
решением уравнения (2.1) на ),( ba . Во-вторых, для любой точки П∈),( 000 yxP  

можно подобрать такое значение 
0
СС = , что частное решение вида 

                                         0

0

)()( CdxxQx
x

x

+= ∫ϕ                                            (2.4) 

будет удовлетворять начальному условию 
00 )( yx =ϕ . Очевидно, что для этого 

достаточно в (2.4) положить 
00

yС = . 

Таким образом, общее решение (2.2) дифференциального уравнения (2.1) 

получается в результате вычисления одного неопределенного интеграла, т.е. 
уравнение (2.1)  интегрируется в квадратурах. 

Пример 2.1. Найти общее решение уравнения xy arcsin'= . 

РЕШЕНИЕ. В данном случае xxQ arcsin)( = . Поскольку xxQ arcsin)( =  

непрерывна на ]1,1[− , то, согласно формуле (2.2), общее решение данного 

дифференциального уравнения имеет вид: 

∫ += Cxdxy arcsin   или  Cxxxy +−+=
2

1arcsin , 

где С – произвольная постоянная. ► 
 

2.2. Линейные дифференциальные уравнения 1-го порядка. Среди 

дифференциальных уравнений 1-го порядка, наиболее часто используемых в 
теоретических и прикладных вопросах, особо выделяются так называемые 
линейные уравнения. 

ОПРЕДЕЛЕНИЕ 2.1. Линейным дифференциальным уравнением 

(короче - ЛДУ) 1-го порядка называется уравнение вида 
 

                                                0)()(')( =++ xCyxByxA ,                                       (2.5) 
 

где коэффициенты )(),(),( xCxBxA  - заданные непрерывные на некотором 

интервале ),( ba  функции независимой переменной x. 

Определяющее свойство линейного уравнения состоит в том, что оно 
содержит искомую функцию )(xyy =  и ее производную y' только в первых 

степенях и не содержит их произведения. 

Предполагая, что коэффициент A(x) не обращается в нуль на интервале 

),( ba , и деля обе части уравнения (2.5) на A(x), приводим его к следующему виду 
 

                                                  )()(' xQyxPy =+ ,                                                  (2.6) 
 

где )(/)()(),(/)()( xAxCxQxAxBxP −== . 

Уравнение вида (2.6), где )(xP  и )(xQ  - заданные непрерывные на 

интервале ),( ba  функции, будем называть линейным дифференциальным 
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уравнением нормального вида. При этом )(xP  называется коэффициентом 

линейного уравнения (2.6), а )(xQ  - правой частью или свободным членом этого 

уравнения. 
Всюду в дальнейшем, говоря о линейных дифференциальных уравнениях, 

мы будем иметь в виду уравнения нормального вида. 
ОПРЕДЕЛЕНИЕ 2.2. Линейное дифференциальное уравнение (2.6) 

называется неоднородным, если 0)( ≡/xQ  на ),( ba . Если же 0)( ≡xQ  на ),( ba , то 

уравнение (2.6) примет вид: 

                                                     0)(' =+ yxPy .                                                    (2.7) 
 

Уравнение (2.7) называется линейным однородным уравнением 1-го порядка. 
Например, 03' =+ xyy  является линейным однородным уравнением, а 

−=⋅+ )exp(cossin' xyxy  линейным неоднородным уравнением 1-го порядка. 
 

Определим теперь область, в которой выполняются условия теоремы Коши 

для линейного уравнения (2.6). Для этого перепишем его в виде: 
 

)()(' xQyxPy +−= . 
 

Так как по нашему предположению функции )(xP  и )(xQ  являются непрерывными 

на ),( ba , то функция )()(),( xQyxPyxf +−=  и ее частная производная 

)(),(' xPyxf y −=  как функции двух переменных x и y будут непрерывны в области 

{ }+∞<<∞−<<= ybxayx, ,)(П  (см. рис. 2.1), т.е. в области П выполняются 

условия теоремы Коши для уравнения (2.6). 

Отметим, что существуют различные методы отыскания общего решения 
линейного уравнения (2.6) в области П. Ниже изложим два часто используемых 
метода решения линейных неоднородных уравнений вида (2.6). 

2.2.1. Решение линейных уравнений вида (2.6), сведением его к 

уравнению вида (2.1). Поскольку коэффициент P(x) уравнения (2.6) является 
заданной непрерывной на ),( ba  функцией, то существует функция 

 

                                                    ( )∫= dxxPxW )(exp)( ,                                               (2.8) 

 

где под ∫ dxxP )(  понимается какая-нибудь фиксированная первообразная для P(x) 

на ),( ba . Ясно, что функция )(xW  является дифференцируемой на ),( ba , причем 

( )∫= dxxPxPxW )(exp)()(' , ),( bax∈ . Кроме того, )(xW  нигде на ),( ba   не обращается 

в нуль. 

Умножая обе части уравнения (2.6) на ( )∫ dxxP )(exp , получаем 
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( ) ( ) ( )∫∫∫ ⋅=⋅+⋅ dxxPxQdxxPxPydxxPy )(exp)()(exp)()(exp'  

или 

                                        ( )[ ] ( )∫∫ ⋅=⋅ dxxPxQdxxPy )(exp)()(exp
'

.                                  (2.9) 

 

Очевидно, что уравнение (2.9) является уравнением вида (2.1) относительно 

функции ( )∫⋅= dxxPyz )(exp . Поэтому общее решение уравнения (2.9) в области 

П задается формулой 

( ) ( ) CdxdxxPxQdxxPy +=⋅ ∫ ∫∫ ])()[exp()(exp  

или 

                          ( ) ( )∫ ∫∫ +⋅−= }])()[exp({)(exp dxdxxPxQCdxxPy ,             (2.10) 

 

где C - произвольная постоянная, а под ( ) dxdxxPxQ∫ ∫ ])()[exp(  понимается 

некоторая фиксированная первообразная  функции ( )∫⋅ dxxPxQ )(exp)(  на ),( ba . 

Таким образом, общее решение неоднородного уравнения (2.6) можно 
задавать формулой (2.10), где C - произвольная постоянная. 

Из формулы (2.10) видно, что если )(xP  и )(xQ  непрерывны на ),( ba , то 

все (частные) решения линейного дифференциального уравнения (2.6) будут 

определены на интервале ),( ba . Следовательно, на основании теоремы Коши для 

уравнения ),(' yxfy =  получаем следующий результат. 

Теорема (теорема Коши для ЛДУ 1-го порядка). Если функции )(xP  и )(xQ  

непрерывны на ),( ba , то для любой точки ),( 000 yxP , принадлежащей области 

{ }+∞<<∞−<<= ybxayx, ,)(П , существует на интервале ),( ba  единственное 

решение )(xy ϕ=  дифференциального уравнения (2.6), удовлетворяющее 

начальному условию 
00 )( yx =ϕ . 

Геометрически эта теорема означает, что через каждую точку ),( 000 yxP  

области П проходит единственная интегральная кривая уравнения (2.6), причем 

эта кривая определена для всех ),( bax∈ . 

Далее заметим, что полагая 0)( ≡xQ  на ),( ba , из формулы (2.10) получаем 

общее решение линейного однородного уравнения (2.7) в следующем виде: 
 

                                                  ( )∫−= dxxPCy )(exp ,                                         (2.11) 
 

где C - произвольная постоянная. 
Таким образом, из формулы (2.10) теперь видно, что общее решение 

линейного неоднородного уравнения (2.6) равно сумме общего решения 
соответствующего однородного уравнения (2.7) и частного решения 
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неоднородного уравнения (2.6), получающегося из (2.10) при 0=C , т.е. 
структура общего решения линейного неоднородного уравнения такова: 

 

                                                            ...... нчооно
yyy += .                                        (2.12) 

 

Замечание 2.1. Из соотношения (2.12) следует, что, если нам известно 
какое-либо частное решение неоднородного линейного уравнения (2.6), то для 
получения общего решения этого уравнения достаточно найти общее решение 
однородного линейного уравнения (2.7). 

Замечание 2.2. В формуле (2.10) неопределенные интегралы можно 
заменить определенными интегралами с переменным верхним пределом: 

 

,)(exp)()(exp

0 00 ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⋅+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−= ∫ ∫∫

x

x

x

x

x

x

dxdxxPxQCdxxPy  

 

где x0 - некоторое фиксированное число из интервала ),( ba . Тогда полагая 

00 )( yxC ==ϕ , общее решение уравнения (2.6) можно записать в виде 
 

                           
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⋅+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−= ∫ ∫∫

x

x

x

x

x

x

dxdxxPxQydxxPy

0 00

)(exp)()(exp 0 .           (2.13) 

 

Пример 2.2. Решить уравнение  
 

                                                 0arcsin' =⋅= yxy .                                        (2.14) 
 

РЕШЕНИЕ. Заметим, что данное уравнение является линейным 

однородным уравнением, причем здесь функция xxP arcsin)( −=  непрерывна на 

]1,1[− . Следовательно, общее решение уравнения (2.14), согласно формуле (2.11), 

задается в виде 

∫⋅=
xdx

eCy
arcsin

  или  }1arcsinexp{ 2
xxxCy −+= , 

 

где C - произвольная постоянная. ► 

Пример 2.3. Найти решение уравнения 
 

)exp(cossin' xyxy =⋅= , 

удовлетворяющее условию ,
0

ey
x

=
=

 где e – основание натурального логарифма. 

РЕШЕНИЕ. В данном уравнении функции xxP sin)( = )exp(cos)( xxQ =  

определены и непрерывны на ),( ∞+−∞ . Поэтому искомое решение будет 

определено на ),( ∞+−∞ . Чтобы найти требуемое частное решение, 

воспользуемся формулой (2.13). Полагая 0
0
=x , ey =

0
, xxP sin)( =  и 

)exp(cos)( xxQ = , из (2.13) получаем )1(cos
xey

x
+= .► 
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2.2.2. О решение линейных неоднородных уравнений методом 

вариации произвольных постоянных. Поскольку структура общего решения 
любого линейного неоднородного уравнения имеет вид (2.12), то для решения 
неоднородного уравнения (2.6) достаточно сначала найти общее решение 
соответствующего однородного уравнения (2.7) по формуле (2.11), где 
C - произвольная постоянная. Тогда, согласно формуле (2.12), для получения 
общего решения неоднородного уравнения (2.6) нужно найти какое-нибудь его 
частное решение. Частное решение уравнения (2.6) можно искать так 
называемым методом вариации произвольной постоянной, т.е. в виде 

 

                                           ( )∫−⋅= dxxPxCy
нч

)(exp)(.. ,                                    (2.15) 

 

)(xC - пока неизвестная функция. Далее подбираем )(xC  так, чтобы функция 

вида (2.15) была решением дифференциального уравнения (2.6), т.е. 
выполнялось тождество 

( )( ) ( )( ) )()(exp)()()(exp)(
'

xQdxxPxCxPdxxPxC ≡−⋅⋅+−⋅ ∫∫ , 

или 

                                             ( )∫⋅≡ dxxPxQxC )(exp)()(' .                                       (2.16) 

 

Отсюда, с помощью интегрирования, находим: 
 

                                         ( )∫ ∫= dxdxxPxQxC ])()[exp()( .                           (2.17) 

 

Наконец, подставив в правую часть формулы (2.15) вместо )(xC  её выражение, 

найденное по формуле (2.17), получим 
 

                                ( ) ( )∫ ∫∫ ⋅−= dxdxxPxQdxxPy
нч

])()[exp()(exp.. ,                      (2.18) 

 

Итак, согласно формуле (2.12), общее решение уравнения (2.6) можно 
задавать в виде 

 

                         ( ) ( )∫ ∫∫ +⋅−= }])()[exp({)(exp dxdxxPxQCdxxPy ,                   (2.19) 

 

C - произвольная постоянная. Очевидно, что формула (2.19) совпадает с 
формулой (2.10). 

Пример 2.4. Решить уравнение  

                                                 
2

2
1

' xy
x

y =⋅− .                                            (2.20) 

РЕШЕНИЕ. Здесь 
x

xP
1

)( −= , 22)( xxQ = . Будем решать данное 

дифференциальное уравнение методом вариации произвольных постоянных. Для 
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этого сначала по формуле (2.11) находим общее решение соответствующего 

однородного уравнения: xCy ⋅= , C - произвольная постоянная. Далее будем 

искать частное решение уравнения (2.20) в виде  
 

                                                         xxCy ⋅= )( ,                                                  (2.21) 
 

)(xC - пока неизвестная функция. Из (2.21) получаем: )()('' xCxxCy +⋅= . Наконец, 

подставив в (2.20) вместо y  и 'y  функцию вида (2.21) и её производную, будем 

иметь: xxC 2)(' = . Отсюда, интегрируя, находим: 
2)( xxC = . Следовательно, одно 

из частных решений уравнения (2.20) имеет вид: 
3

xy = . Значит, общее решение 

уравнения (2.21) можно задавать так: 3
xxCy +⋅= , где C - произвольная 

постоянная.► 
 

2.3. Уравнение Бернулли. В этом пункте рассмотрим один класс 
дифференциальных уравнений 1-го порядка, легко приводимых к линейным 

уравнениям. 

ОПРЕДЕЛЕНИЕ 2.3. Уравнением Бернулли
9
 называется 

дифференциальное уравнение 1-го порядка вида 
 

                                                       m
yxQyxPy ⋅=⋅+ )()(' ,                                        (2.22) 

 

где P(x) и Q(x) – заданные непрерывные на (a, b) функции, а m  – некоторое 
постоянное число, причем 0≠m  и 1≠m . 

Уравнение Бернулли (2.22) можно привести к линейному 

дифференциальному уравнению следующим приемом. Предполагая 0≠y , 

разделим обе части (2.22) на m
ym ⋅−

−1)1( . Тогда получим  
 

                           )()1()()1()1( 1 xQmyxPm
dx

dy
ym mm

⋅−=⋅⋅−+⋅⋅−
−−

.                      (2.23) 

Теперь введем новую неизвестную функцию 
m

yz
−

=
1

. Тогда будем иметь: 

xd

yd
ym

xd

zd m
⋅⋅−=

−)1( . 

Следовательно, относительно функции )(xzz =  уравнение (2.23) примет вид: 

                                )()1()()1( xQmzxPm
xd

zd
⋅−=⋅⋅−+ .                          (2.24) 

 

Но последнее уравнение является линейным уравнением 1-го порядка. 

В силу формулы (2.10) общее решение уравнения (2.24) задается 

                                                
9
 Уравнение  (2.22)  впервые  было   предложено  в 1695 году  швейцарским   математиком   Якобом  

Бернулли (1654-1705), а метод решения этого уравнения был опубликован в 1697 году  его  братом Иоганном 

Бернулли (1667-1748). 
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следующей формулой 

                 ][ ∫
∫−∫−

−+= dxexQmCez
dxxPmdxxPm )()1()()1(

)()1( .            (2.25) 
 

Подставив в (2.25) вместо z выражение m
y

−1
, получим общий интеграл 

уравнения Бернулли в виде 
 

               ][ )()1()()1(m-1 )()1(y ∫
∫−∫−

−+= dxexQmCe
dxxPmdxxPm

.                 (2.26) 
 

Замечание 2.3. Из уравнения Бернулли (2.22) явно видно, что при 0>m  

функция 0≡y  на (a, b) также является решением этого уравнения. Поэтому к 

решениям, полученным из формулы (2.26), нужно добавить еще решение вида 
0≡y . Кроме того, важно заметить, что при 10 << m  решение 0≡y  будет особым. 

Действительно, при 10 << m  из системы уравнений 
 

( )
⎪⎩

⎪
⎨
⎧

=

−+= ∫
∫−∫−−

0

,)()1(
)()1()()1(1

y

dxexQmCey
dxxPmdxxPmm

 

 

однозначно определяется параметр 0
CC = : 

)( 00 xWC = , где  ),(0 bax ∈   и  ∫
∫−

⋅−= dxexQmxW
dxxPm )()1(

)()1()( . 
 

Поэтому через каждую точку )0,( 0xM  интегральной кривой 0≡y  проходит 

еще одна интегральная кривая )(xy ψ= , неявно задаваемая уравнением (2.26) при 

0
CC = . 

Пример 2.5. Решить уравнение 
 

                                              yxyxy 42' =⋅+ .                                      (2.27) 
 

РЕШЕНИЕ. Уравнение (2.20) есть уравнение Бернулли, причем здесь 

2

1
=m , xxP 2)( = , xxQ 4)( = . Следовательно, по формуле (2.19) получим 

                          ⎥
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⎤
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⎞
⎜⎜
⎝

⎛
⋅+⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= ∫ dx

x
xC

x
y

2
exp2

2
exp

22

.                 (2.28) 

Так как ∫ ∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅

2
exp2

22
exp2

2
exp2

2222
xx

d
x

dx
x

x , то в силу (2.28) 

общий интеграл уравнения (2.27) будет иметь вид: ,2
2

exp
2

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅=

x
Cy  где 

C - произвольная постоянная. Кроме того, здесь функция 0=y  также является 

решением уравнения (2.27), причем это особое решение. ► 

 



25 

 

II. КОНТРОЛЬНЫЕ ВОПРОСЫ И ЗАДАНИЯ 
 

1. Какое дифференциальное уравнение называется интегрируемым в 
квадратурах ? 

2. Каков вид общего решения дифференциального уравнения )(' xQy =  ? 

3. Какое дифференциальное уравнение называется линейным ? 

4. Каким приемом линейное дифференциальное уравнение )()(' xQyxPy =+  

можно привести к уравнению, явно не содержащему искомой функции ? 

5. Каков вид общего решения однородного линейного дифференциального 
уравнения 0)(' =+ yxPy ? 

6. Каков вид общего решения неоднородного линейного 
дифференциального уравнения )()(' xQyxPy =+ ? 

7. Почему уравнение )()(' xQyxPy =+  относится к уравнениям, разрешимым 

в квадратурах ? 

8. Какова структура общего решения линейного неоднородного 

дифференциального уравнения )()(' xQyxPy =+ ? 

9. Сформулируйте теорему Коши для ЛДУ. Могут ли ЛДУ иметь особые 
решения? 

10. Изложите суть решения линейного неоднородного дифференциального 

уравнения )()(' xQyxPy =+  методом вариации произвольной постоянной. 

11.  Какое дифференциальное уравнение называется уравнением 

Бернулли? 

12.  Какие способы решения уравнения Бернулли Вы знаете ? 

13.  Каков вид общего интеграла уравнения Бернулли ? 

14.  Может ли уравнение Бернулли иметь особые решения ? 

 

 

III. ПРИМЕРЫ И ЗАДАЧИ ДЛЯ АУДИТОРНОЙ РАБОТЫ 
  

2.1. Найдите общие решения дифференциальных уравнений: 

           а) 2
2' xyxy =+ ;                     б) xyy cos' =+ . 

 

2.2. Найдите частные решения следующих дифференциальных 
уравнений, удовлетворяющие указанным начальным условиям: 

         а) ;1,
cos

1
tg' 0 ==− =xy

x
xyy          б) .1,' 2

22
==+ =xyxyxy  

 

2.3. Общее решение некоторого дифференциального уравнения имеет 
вид: )()( xxCy ψϕ += , где C  - произвольная постоянная, ψϕ,  - конкретные 

функции от x. Докажите, что дифференциальное уравнение, задающее любое 
семейство кривых этого вида, есть линейное уравнение. 
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2.4. Решите уравнение, линейное относительно переменной x: 

yyx
y

2sincos

1
'

+
= . 

 

2.5. За сколько минут тело, нагретое до 100
о
, охладится до 25

о 
 в комнате с 

температурой 20
о
, если до 60

о
 оно охлаждается за 10 минут ? (По закону Ньютона 

скорость охлаждения пропорциональна разности температур). 
 

2.6. Сила тока i  в цепи с сопротивлением R, самоиндукцией L и 

напряжением )(tU  удовлетворяет дифференциальному уравнению ).(tURi
dt

di
L =+  

Решите это уравнение, считая R, L  постоянными, а )0()( >= kkttU ; 

начальное условие 0)0( =i . 
 

2.7. Решите дифференциальное уравнение  33
22' yxxyy =+ . 

 

2.8. Найдите общее и все особые решения дифференциального уравнения 

yxyxy
2

4' =− . 

 

IV. ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ 
 

2.9. Найдите общее решение дифференциального уравнения  
2

22'
x

xexyy
−

=+ . 
 

2.10. Найдите частные решения следующих дифференциальных 
уравнений, удовлетворяющие указанным начальным условиям: 

а) ;1,
1

'
1
==

+
−

=x
yx

x

y
xy                    б) 5,02'

0
==−

=x
yxyy . 

 

2.11. Решите уравнение, линейное относительно переменной x: 

0')2( 22
=+−− yyyxyx . 

 

2.12. Закон распада радия состоит в том, что скорость распада 
пропорциональна наличному количеству радия. Известно, что половина его 
первоначального запаса распадается по истечении 1600 лет. Определите 
количество нераспавшегося радия по истечении 100 лет, если первоначальное 
его количество равно 1 кг. 

 

2.13. Найдите общее и особые решения дифференциального уравнения 

xyyxy ln'
2

=+ . 
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ЗАНЯТИЕ № 3 
 

Тема: Геометрическое истолкование уравнения ),(' yxfy =  и его решений.  

О приближенных методах решения дифференциальных уравнений. 

Уравнения в полных дифференциалах 
 

I. ОСНОВНЫЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ 
 

3.1. Геометрическое истолкование уравнения ),(' yxfy =  и его решений. 

Пусть задано дифференциальное уравнение 

                                                             ),( yxf
dx

dy
= ,                                                  (3.1) 

где функция ),( yxf  определена в некоторой области 
2

R⊆G . Предположим, что 

)(xyy =  является интегральной кривой 

уравнения (3.1), проходящей через точку 
GyxP ∈),(  (см. рис. 3.1). Тогда, как 

известно, αtg)(' =xy , где α - угол, 

образованный касательной к кривой 

)(xyy =  в точке ),( yxP  с положительным 

направлением оси OX . Но поскольку  

)(xyy =  - решение уравнения (3.1), то 

будем иметь: 
))(,()(' xyxfxy ≡ . 

 

Следовательно, ))(,(tg xyxfx = .  

Итак, если через точку GyxP ∈),(  проходит некоторая интегральная кривая 

)(xyy = , то угловой коэффициент 

касательной к этой кривой  в точке ),( yxP  

определяется формулой 
 

               ),(tg yxfx = .                (3.2) 
 

Иначе говоря, угловой коэффициент 

αtg=k  в каждой точке ),( yxP  кривой 

)(xyy =  заранее определен самим 

дифференциальным уравнением (3.1). 

Сопоставим теперь каждой точке 
GyxP ∈),(  направление (направленный 

отрезок единичной длины), определяемое 

0 

y 

x 

G 

                  Рис. 3.1 

                   Рис. 3.2 
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условием (3.2). Тогда получим так называемое поле направлений, определяемое 
уравнением (3.1) (см. рис. 3.2).  

Таким образом, геометрически дифференциальное уравнение (3.1) можно 
истолковать как поле направлений, определенное в области G соотношением 

(3.2). 

При этом каждая интегральная кривая )(xyy =  уравнения (3.1) обладает 

тем свойством, что направление касательной в любой точке этой кривой 

совпадает с направлением поля уравнения (3.1) в рассматриваемой точке. 
Следовательно, геометрически задача интегрирования дифференциального 
уравнения (3.1) заключается в отыскании такого семейства интегральных 
кривых, чтобы направление касательной к любой кривой семейства в любой 

точке (этой кривой) совпадало с направлением поля данного уравнения в этой 

точке. 
Далее введем понятия области задания поля направлений и симметричной 

формы записи дифференциальных уравнений 1-го порядка. 
Умножив обе части (3.1) на dx, с учетом равенства dydxy =' , уравнение 

(3.1) можно записать в следующей дифференциальной форме: 
 

                                                        dxyxfdy ),(= .                                                (3.3) 
 

Заметим, что переменные x и y входят в уравнение (3.3), вообще говоря, 
несимметрично. Это проявляется, в частности, в том, что интегральные кривые 
уравнения (3.3) не могут быть продолжены за точку с вертикальной касательной, 

так как поле направлений уравнения (3.3) не содержит направлений, 

параллельных оси OY . 

Итак, до сих пор, говоря об уравнении (3.1) (или (3.3) ), мы предполагали, 

что правая часть этого уравнения ),( yxf  в каждой точке GyxP ∈),(  имела 

конечное значение. Однако, если в какой-то точке ),( 111 yxP  функция ),( yxf  имеет 

бесконечное значение (т.е. при x→x1 и y→y1 имеем: +∞=),(lim yxf  (или 

−∞=),(lim yxf ) ), то уравнение ),(' yxfy =  в такой точке также задает 

определенное направление поля. Это направление будет параллельно оси OY , так 

как +∞=αtg  при 
2

π
α =  (или −∞=αtg  при 

2

π
α = ). 

Если рассмотрим теперь «перевернутое» уравнение 
 

                                                 
),(

1

yxfdy

dx
= ,                                                (3.4) 

 

то правая часть (3.4) в точке ),( 111 yxP  будет иметь конечное значение (нуль !). 

Обычно уравнение (3.4) называют дополнительным к уравнению (3.1), и в 
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окрестностях всех точек ),( 111 yxP , где ),( yxf  неограниченна, интегральные 

кривые уравнения (3.4) присоединяются к интегральным кривым уравнения 
(3.1). Ясно, что интегральные кривые дифференциального уравнения (3.4) надо 
искать в виде )(ygx = . 

Например, пусть дано дифференциальное уравнение 
x

y

dx

dy
= . Рассматривая 

дополнительное к нему уравнение 
y

x

dy

dx
=  замечаем, что при этом появляются 

новые интегральные кривые )0(0 >≡ yx  и )0(0 <≡ yx . Эти интегральные кривые 

следует присоединять к интегральным кривым данного уравнения 
x

y

dx

dy
=  

ОПРЕДЕЛЕНИЕ 3.1. Множество 
2

1
R⊆G , в каждой точке которого 

имеет смысл (т.е. определена) по крайней мере одна из функций ),( yxf  или 

),(

1
),(1

yxf
yxf = , будем называть областью задания поля направлений 

дифференциального уравнения (3.1). 

Например, для уравнения 
x

y
y ='  областью задания поля направлений 

является область )}0,0{(\2
1 R=G , так как здесь xyyxf /),( =  определена при 

0≠x , а yxyxf /),(1 =  определена при 0≠y . 

Существует форма записи дифференциального уравнения 1-го порядка, 
объединяющая (3.1) и (3.4), это так называемая симметричная форма: 

 

                                                 0),(),( =+ dyyxNdxyxM ,                                         (3.5) 
 

где ),( yxM  и ),( yxN  - заданные непрерывные в некоторой области 2
R⊆D  

функции. 

ОПРЕДЕЛЕНИЕ 3.2. Точка DyxS ∈),( 000
 называется особой для 

дифференциального уравнения (3.5), если 
 

                                             0),(),( 0000 == yxNyxM .                                        (3.6) 
 

Например, для дифференциального уравнения 
 

                                               032
223

=+ dyyxdxxy                                             (3.7) 
 

особыми являются все точки осей OX  и OY , т.е. точки вида (x, 0) и (0, y). 

ОПРЕДЕЛЕНИЕ 3.3. Компонентой связности множества Q будем 

называть связное подмножество QK ⊂ , обладающее тем свойством, что не 

существует другого связного подмножества K1 множества Q, 
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удовлетворяющего условию 
1

KK ⊂ .  

Другими словами, компонентой связности множества Q называется любое 
его максимальное связное подмножество. 

Так как функции ),( yxM  и ),( yxN  непрерывны в области 2
R⊂D , то 

множество E всех особых точек будет замкнуто. Следовательно, множество 
EDD \

1
=  является открытым. Обозначим через G компоненту связности 

множества EDD \
1
= . Тогда для любой точки GyxP ∈),( 00

 можно указать такую ее 

окрестность, где либо 0),( ≠yxM , либо 0),( ≠yxN . В этой окрестности уравнение 

(3.5) эквивалентно по крайней мере одному из уравнений 
 

                            
),(

),(

yxN

yxM

dx

dy
−=    или   

),(

),(

yxM

yxN

dy

dx
−= .                                 (3.8) 

 

Таким образом, уравнения (3.1) и (3.4) являются частными случаями 

уравнения вида (3.5). 

Дадим теперь более полное и точное определение решения 
дифференциального уравнения вида (3.5). 

ОПРЕДЕЛЕНИЕ 3.4. Пусть функции ),( yxM  и ),( yxN  непрерывны в 

области D. Решением дифференциального уравнения (3.5) называется функция 

)(xy ϕ=  (или )(yx ψ= ), определенная на промежутке 〉〈 ba, , если она 

удовлетворяет следующим условиям: 

1) ϕ(x) (или ψ(y)) дифференцируема на 〉〈 ba, ; 

2) (x, ϕ(x)) ∈ D при всех x∈ 〉〈 ba,  (или (ψ(y), y)∈D при всех y∈ 〉〈 ba, ); 

3) 0)('))(,())(,( =⋅+ xxxNxxM ϕϕϕ  при всех x ∈ 〉〈 ba,   

(или 0)),(()(')),(( =+⋅ yyNyyyM ψψψ  при всех y ∈ 〉〈 ba, ). 

Например, функция 3

2
−

= xy  является решением уравнения (3.7) на 

промежутке (0, +∞). Действительно, здесь 3

5

3

2
'

−

−= xy . Подставляя в (3.7) 

значения y и y', получаем: 022
11
≡−

−−
xx  на (0, +∞). 

Аналогично можно проверить, что функция 3

2
−

−= yx  также является 

решением уравнения (3.7) на промежутке (0, +∞). 
 

3.2. О приближенных методах решения дифференциальных 
уравнений. Поскольку класс интегрируемых в квадратурах дифференциальных 
уравнений весьма узок, то, начиная уже с XVIII столетия, в теории 

дифференциальных уравнений часто использовались различные приближенные 
методы. 
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В настоящее время в связи с созданием быстродействующих компьютеров 
и разработкой для них различных пакетов прикладных программ приближенные 
методы решения дифференциальных уравнений стали играть существенную 

роль. 
Ниже будут рассмотрены некоторые простейшие приближенные методы 

решения дифференциальных уравнений вида (3.1). 

3.2.1. Метод изоклин. Как было установлено в пункте 3.1, задание 

дифференциального уравнения ),( yxf
dx

dy
=  равносильно заданию в некоторой 

области 
2

R⊆G
 определенного поля 

направлений. Покажем, что, зная поле 
направлений, можно графически 

построить (приближенно) ту или иную 

интегральную кривую данного 
дифференциального уравнения. При 

этом оказывается очень полезным 

знание тех линий в области G, во всех 
точках которых направление поля 
уравнения ),(' yxfy =  одно и то же. 

Такие линии называют изоклинами 
данного уравнения (или изоклинами 

поля направлений). Очевидно, 
уравнение изоклины для дифференциального уравнения ),(' yxfy =  имеет вид: 

 

kyxf =),(   или  ,0),( =− kyxf  
 

где k – постоянное число ( αtg=k ).  

Далее опишем графический способ решения уравнения (3.1), который 

обычно называется методом изоклин. 

Сначала, придавая k ряд конкретных значений k1, k2, ..., km, построим на 
плоскости XOY  изоклины 

1),( kyxf = , 
2),( kyxf = , … , 

mkyxf =),(  

 

данного дифференциального уравнения (3.1). Затем на построенных изоклинах 
расставим стрелки под таким углом к положительному направлению оси OX , 

чтобы тангенс этого угла равнялся соответствующему значению k. Наконец, 

чтобы построить приближенный график решения )(xy ϕ=  уравнения (3.1), 

удовлетворяющего начальному условию 
00 )( yx =ϕ , надо, исходя из точки 

),( 000 yxP , провести кривую таким образом, чтобы она пересекала изоклины так, 

как указывают стрелки на этих изоклинах (см. рис. 3.3). 

                   Рис. 3.3 
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Например, для дифференциального уравнения 22
' yxy +=  изоклинами 

будут окружности  kyx =+
22

, где 0const >=k . На рисунке 3.3 методом 

изоклин построена интегральная кривая данного дифференциального уравнения, 
проходящая через начало координат, т.е. решение )(xy ψ= , удовлетворяющее 

начальному условию 0)0( =ψ . 

3.2.2. Метод последовательных приближений. Пусть для 

дифференциального уравнения ),( yxf
dx

dy
=  в некоторой области 

2
R⊆G  

выполняются условия теоремы Коши (о существовании и единственности 

решения) и пусть точка ),( 000 yxP  принадлежит области G . Тогда как показано в 

пункте 1.2 задача Коши, состоящая в отыскании решения )(xy ϕ=  уравнения 

),( yxf
dx

dy
= , удовлетворяющего начальному условию 

00 )( yx =ϕ , равносильна 

решению интегрального уравнения  

                                           ∫+=

x

x

dttytfyy

0

))(,(0 .                                        (3.9) 

Далее, искомое решение )(xy ϕ=  дифференциального уравнения 

),( yxf
dx

dy
=  в некоторой окрестности ),( 00 hxhx +−  точки 

0
x  может быть 

построено методом последовательных приближений по формуле: 
 

                                           )(lim)( xx
n

n

ϕϕ
∞→

= ,                                            (3.9а) 

где ∫+=+

x

x

nn dtttfyx

0

))(,()( 01 ϕϕ , ...,2,1,0=n , причем в качестве «нулевого 

приближения» )( 0xϕ  можно взять любую непрерывную на интервале 

),( 00 hxhx +−  функцию (в частности, можно положить constyx =≡ 00 )(ϕ ). 

Пример 3.1. Методом последовательных приближений построить первые 
три приближения решения следующей задачи Коши: 

                                              22 yx
dx

dy
+= ,   0)0( =y .                                   (3.10) 

РЕШЕНИЕ. Так как здесь 0)0( =y , то последовательные приближения 

можно находить по формуле: 

                        ∫ +=+

x

nn dttytxy

0

22
1 })]([{)( ,   ...,2,1,0=n  .                         (3.11) 
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Далее, полагая в (3.11) 0)(0 ≡xy , будем иметь: ∫ ==

x
x

dttxy

0

3
2

1
3

)( . Отсюда 

последовательно получим: 

∫ +=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+=

x
xx

dt
t

txy

0

736
2

2
6339

)( , 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+++=

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++= ∫ 94533

2
1

633633
)(

84

0

73
2

73
2

3

xxxx
dt

tt
txy

x

.► 

В заключение данного пункта важно также отметить, что в настоящее 
время разработаны различные эффективные приближенные методы решения 
дифференциальных уравнений, численная реализация которых полностью 

осуществляется с помощью современных систем компьютерной математики 

(см., например, [8]). 

3.3. Уравнения в полных дифференциалах. В этом пункте рассмотрим 

еще один класс дифференциальных уравнений 1-го порядка, интегрируемых в 
квадратурах. 

ОПРЕДЕЛЕНИЕ 3.5. Дифференциальное уравнение вида 
 

                                                 0),(),( =+ dyyxNdxyxM ,                                       (3.12) 
 

где ),( yxM  и ),( yxN  - заданные и непрерывные в некоторой области 2
R⊆D  

функции, называется уравнением в полных дифференциалах, если левая часть 

(3.12) является полным дифференциалом некоторой функции ),( yxU  двух 

переменных x и y, т.е. 

                dy
y

yxU
dx

x

yxU
yxdUdyyxNdxyxM

∂

∂
+

∂

∂
==+

),(),(
),(),(),( .                (3.13) 

Например, уравнение 

                                                   032
223

=+ dyyxdxxy                                          (3.14) 
 

является уравнением в полных дифференциалах, так как 
 

),,(32 223 yxdUdyyxdxxy =+  

где 32),( yxyxU = . 

Предположим, что уравнение (3.12) является уравнением в полных 
дифференциалах, т.е. выполняется равенство (3.13). Тогда для любого решения 

)(xyy =  уравнения (3.12)  будет иметь место равенство 0))(,( =xyxdU  для всех x из 

некоторого промежутка 〉〈 ba, . Отсюда следует, что 
 

                                                          CyxU =),( ,                                                 (3.15) 
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где C - некоторая постоянная (для каждого решения )(xyy =  постоянная C своя). 

И обратно, для функции )(xyy = , неявно определяемой уравнением (3.15), будем 

иметь 0))(,( ≡xyxdU  на 〉〈 ba, , т.е. эта функция )(xyy =  будет решением уравнения 

(3.12). 

Таким образом, уравнение (3.15), где  C - произвольная постоянная, будет 
общим интегралом дифференциального уравнения в полных дифференциалах 
(3.12). 

Например, общим интегралом рассмотренного выше уравнения (3.14) 

будет Cyx =
32

, где C - произвольная постоянная. 

Из сказанного выше можно сделать такой вывод: чтобы решить уравнение 
в полных дифференциалах вида (3.12), достаточно найти функцию ),( yxU , 

полный дифференциал которой совпадает с левой частью данного уравнения, и 

приравнять эту функцию произвольной постоянной. 

Найдем теперь признак, по которому относительно данного уравнения 
(3.12) можно судить, принадлежит ли оно к классу уравнений в полных 
дифференциалах. Имеет место следующая  

Теорема 3.1. Пусть функции ),( yxM  и ),( yxN  непрерывны вместе со 

своими частными производными yyxM ∂∂ /),(  и xyxN ∂∂ /),(  в некоторой 

односвязной области D плоскости XOY . Для того чтобы уравнение (3.12) было 

уравнением в полных дифференциалах, необходимо и достаточно, чтобы в 

области D выполнялось тождество:   

                                                   
x

yxN

y

yxM

∂

∂
≡

∂

∂ ),(),(
.                                         (3.16) 

Доказательство. Пусть 
выполняются условия данной 

теоремы. Но, как известно (см., 

например, [11], Ч. II, с. 195), 

условие (3.16) является 
необходимым и достаточным для 
того, чтобы выражение 

dyyxNdxyxM ),(),( +  было полным 

дифференциалом некоторой 

функции ),( yxU . Но последнее 

означает, что уравнение (3.12) 

является уравнением в полных 
дифференциалах. Теорема 

доказана. ► 

Из курса математического анализа известно, что задача отыскания в 

                   Рис. 3.4 
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области D функции ),( yxU  по ее полному дифференциалу dyyxNdxyxM ),(),( +  

решается по формуле: 
 

                                  ∫ ++=
),(

),(
1

00

),(),(),(
yx

yx
CdyyxNdxyxMyxU ,                          (3.17) 

 

где интегрирование производится вдоль любой кусочно-гладкой кривой ABL = , 

лежащей в области D и соединяющей некоторую фиксированную точку ),( 00 yxA  

с любой другой точкой ),( yxB  из D, а C1 - произвольная постоянная. 

Поскольку при выполнении условий (3.16) криволинейный интеграл (3.17) 

не зависит от пути интегрирования, то вычисление этого интеграла можно 
значительно упростить, если в качестве пути интегрирования взять ломаную 

линию ( AKB  или ATB ), звенья которой параллельны осям координат (см. рис. 
3.4). Тогда получим: 

     ∫ ∫ ∫ ∫+=+=

KA BK

x

x

y

y

dyyxNdxyxMdyyxNdxyxMyxU

0 0

),(),(),(),(),( 0             (3.18а) 

или 

             ∫ ∫ ∫ ∫+=+=

TA BT

x

x

y

y

dyyxNdxyxMdyyxMdxyxNyxU

0 0

),(),(),(),(),( 0             (3.18б) 

 

(в формулах (3.18a) и (3.18б) для определенности мы в качестве постоянной 

интегрирования C1 взяли число нуль). 
Таким образом, общий интеграл уравнения в полных дифференциалах 

вида (3.12) можно задавать в виде 

  CdyyxNdxyxM

x

x

y

y

=+∫ ∫
0 0

),(),( 0    или   CdyyxNdxyxM

x

x

y

y

=+∫ ∫
0 0

),(),( 0 ,         (3.19) 

где C - произвольная постоянная. 
Пример 3.2. Решить уравнение 
 

                                                0)2( =+−
−− dyxeydxe yy

.                                     (3.20) 
 

РЕШЕНИЕ. Здесь y
eyxM
−

=),( , а )2(),( y
xeyyxN

−
+−= . Тогда 

yy
e

y

M
e

x

N −−
−=

∂

∂
−=

∂

∂
, . Следовательно, 

y

M

x

N

∂

∂
=

∂

∂
 во всех точках R2

, т.е. уравнение 

(3.20) является уравнением в полных дифференциалах. Поэтому общий интеграл 
данного уравнения можно найти, например, по первой из формул (3.19), взяв в 
качестве начальной точки пути интегрирования точку )0,0(A . Тогда получим: 

Cdyxeydx

x y
y

=+−∫ ∫
−

0 0

)2(    или  Cyxe
y

=−
− 2

, 

где C - произвольная постоянная. ► 
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Замечание 3.1. На практике задачу отыскания функции ),( yxU  по ее 

полному дифференциалу dyyxNdxyxM ),(),( + , к которой приводится 

интегрирование уравнения в полных дифференциалах, часто решают 
следующим способом.  

Пусть выражение dyyxNdxyxM ),(),( +  является полным дифференциалом 

некоторой функции ),( yxU  в области D, т.е. выполняется условие (3.13). Тогда в 

области D имеют место следующие два равенства: 
 

                                              ),( yxM
x

U
=

∂

∂
    и   ),( yxN

y

U
=

∂

∂
.                                 (3.21) 

 

Из первого равенства (3.21) будем иметь: 
 

                                                ∫ += )(),(),( ydxyxMyxU ϕ ,                                       (3.22) 
 

где )(yϕ  - произвольная непрерывно дифференцируемая функция от y, не 

зависящая от x. Подберем теперь )(yϕ  так, чтобы частная производная по y от 

функции ),( yxU , определяемой по формуле (3.22), была равна ),( yxN . Такой 

выбор функции )(yϕ  при условии (3.16) всегда возможен. Действительно, из 

(3.22) имеем: 

( ) )('),(
),(

ydxyxM
yy

yxU
ϕ+

∂

∂
=

∂

∂
∫ . 

Приравняв правую часть полученного равенства к ),( yxN , найдем  
 

                                         ( )∫∂

∂
−= dxyxM

y
yxNy ),(),()('ϕ .                                (3.23) 

 

Левая часть уравнения (3.23) не зависит от x. Убедимся в том, что при условии 

(3.16) в его правую часть также не входит x. Для этого покажем, что частная 
производная по x от правой части (3.23) тождественно равна нулю. Имеем: 
 

( ) .0),(),(),( ≡
∂

∂
−

∂

∂
=⎥

⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂

∂

∂
−

∂

∂
=⎥

⎦

⎤
⎢
⎣

⎡

∂

∂
−

∂

∂
∫∫ y

M

x

N
dxyxM

yxx

N
dxyxM

y
yxN

x
 

 

Далее, интегрируя по y, из (3.23) будем иметь: 
 

( ) 1),(),()( CdydxyxM
y

yxNy +⎥
⎦

⎤
⎢
⎣

⎡

∂

∂
−= ∫ ∫ϕ , 

 

где C1 - произвольная постоянная. Подставляя найденное значение )(yϕ  в (3.22), 

получим искомую функцию 

                         ( ) dydxyxM
y

yxNdxyxMyxU ∫ ∫∫ ⎥
⎦

⎤
⎢
⎣

⎡

∂

∂
−+= ),(),(),(),(                          (3.24) 

(здесь для определенности мы положили 0
1
=C ). 
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Пример 3.3. Решить уравнение 0)sin(cos2 22
=−+⋅ dyyxydxyx . 

РЕШЕНИЕ. Здесь xxyxM cos2),( =  .sin),( 22
yxyyxN −=  Так как  

yx
x

N
sin2−=

∂

∂
, yx

y

M
sin2−=

∂

∂
, то 

y

M

x

N

∂

∂
=

∂

∂
 во всех точках плоскости R

2
. 

Следовательно, данное уравнение является уравнением в полных 
дифференциалах. 

Обозначим через ),( yxV  функцию, полный дифференциал которой есть 

левая часть данного уравнения. Тогда будем иметь: 
 

                                                yxyxVx cos2),(/
= ,                                                 (3.25) 

 

                                              .sin),( 22/
yxyyxVy −=                                             (3.26) 

 

Интегрируя по x, из (3.25) получим 
 

                            ∫ +⋅=+⋅= )(cos)(cos2),( 2 yyxydxyxyxV ϕϕ ,                    (3.27) 

 

где )(yϕ  - произвольная непрерывно дифференцируемая функция от y. Отсюда 

находим: 

                                        .)('sin),( 2/
yyxyxVy ϕ+−=                                          (3.28) 

 

Сравнивая (3.26) и (3.28), получаем: 
 

                            yxyyyx sin)('sin 222 −=+− ϕ - x
2
  или  

2)(' yy =ϕ . 
 

Отсюда найдем ∫ +=+= 1

3

1
2

3
)( C

y
Cdyyyϕ , где C1 - произвольная постоянная. 

Тогда по формуле (3.27) получим 1

32

3

1
cos),( CyyxyxV ++⋅= . Следовательно, 

общий интеграл данного уравнения имеет вид: 

CCyyx =++⋅
1

32

3

1
cos , 

где C - произвольная постоянная, или 
2

32
cos3 Cyyx =+⋅  где )(3 12 CCC −=  - новая 

произвольная постоянная. ► 

Замечание 3.2. Важно отметить, что бывают случаи, когда данное 
дифференциальное уравнение вида (3.12) не является уравнением в полных 
дифференциалах, но удается найти такую функцию ),( yxµµ = , что после 

умножения обеих частей данного уравнения на нее, получается уравнение в 
полных дифференциалах, т.е. уравнение вида 

 

                         .0),(),(),(),( =+ dyyxNyxdxyxMyx µµ  
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В таком случае функцию ),( yxµµ =  называют интегрирующим множителем 

уравнения (3.12) (более подробную информацию об интегрирующем множителе 
можно получить, например, в [21]). 

 

II. КОНТРОЛЬНЫЕ ВОПРОСЫ И ЗАДАНИЯ 
 

1. Какой геометрический смысл имеет дифференциальное уравнение  

),(' yxfy =  и его решение ? 

2. Что такое изоклины дифференциального уравнения ),(' yxfy = ? 

3. Может ли изоклина быть интегральной кривой данного 
дифференциального уравнения ),(' yxfy = ? 

4. В каких точках плоскости XOY интегральные кривые уравнения 

),(' yxfy =  могут быть параллельны оси OY ? 

5. Что называется областью задания поля направлений 

дифференциального уравнения ),(' yxfy = ? 

6. Какова симметричная форма записи дифференциального уравнения      
1-го порядка ? 

7. Какая точка называется особой точкой дифференциального уравнения 

0),(),( =+ dyyxNdxyxM  ? 

8. В чем основная суть приближенного решения уравнения ),(' yxfy =  

методом изоклин (методом последовательных приближений) ? 

9. Дайте определение решения дифференциального уравнения

0),(),( =+ dyyxNdxyxM . 

10. Когда уравнение 0),(),( =+ dyyxNdxyxM  называется уравнением в 

полных дифференциалах ? 

11. Если dyyxNdxyxMyxdU ),(),(),( += , то каков общий интеграл 

дифференциального уравнения 0),(),( =+ dyyxNdxyxM  ? 

12. Каков признак того, что уравнение 0),(),( =+ dyyxNdxyxM  является 

уравнением в полных дифференциалах ? 

13. В чем суть метода решения уравнения в полных дифференциалах ? 

14. Что называется интегрирующим множителем дифференциального 
уравнения 0),(),( =+ dyyxNdxyxM  ? 

 

III. ПРИМЕРЫ И ЗАДАЧИ ДЛЯ АУДИТОРНОЙ РАБОТЫ 
 

3.1. Найдите  особые точки следующих дифференциальных уравнений: 

           а) 
yx

yx
y

2

53
'

−

−+
= ;                б) 

4

28
'

33

−+

−+
=

yx

yx
y . 
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3.2. Методом изоклин приближенно постройте интегральные кривые 

дифференциального уравнения 2
' xyy −= . 

 

3.3. Методом последовательных приближений решите задачу Коши:  

.1)0(, == yy
dx

dy
 

3.4. Сколько решений дифференциального уравнения 0)1( =+− y
dx

dy
x  

определяет соотношение Cxy =− )1(  при каждом фиксированном значении 

?R∈C  

3.5. Решите дифференциальное уравнение  dy
x

y
dx

x

y

x 34

2

2

231
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+ . 

3.6. Найдите интегральную кривую уравнения dx
yx

y
dy

yx

x
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

+
=

+
1

2222
, 

проходящую через точку )1;1(M . 
 

3.7. Найдите кривую,  для которой площадь, ограниченная этой кривой, 

осью абсцисс и двумя прямыми, параллельными оси OY,  пропорциональна 
отношению абсциссы к ординате правой концевой точки дуги кривой. 

 

IV. ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ 
 

3.8. Решите дифференциальные уравнения:  
 

       а) 0)1(3 32
=−+ dyexdxex yy

;     б) 0cos)cos(sin 2
=++ xydyxdxxyxyxy . 

 

3.9. Найдите интегральную кривую дифференциального уравнения 

0)36()223( 22
=+++++ dyxxydxxxyy , проходящую через точку )1;0(M . 

 

3.10. Найдите особые точки дифференциального уравнения 

6

13
'

22

−

−+
=

xy

yx
y . 

 

3.11. Методом изоклин приближенно постройте интегральные кривые 

дифференциального уравнения  
x

y
y

2
'= . 

 

3.12. Найдите три последовательных приближения решения следующей 

задачи Коши:  .1)0(, =+= yyx
dx

dy
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ЗАНЯТИЕ № 4 
 

Тема: Дифференциальные уравнения с разделяющимися переменными. 

Дифференциальные уравнения, однородные относительно x и y 

 

I. ОСНОВНЫЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ 
 

4.1. Дифференциальные уравнения с разделяющимися переменными. 

В класс уравнений в полных дифференциалах входят, в частности, уравнения 
вида 
                                                    0)()( =+ dyxQdxxP ,                                               (4.1) 
 

где )(xP  – заданная и непрерывная на некотором интервале ),( ba  функция 

переменной x, а )(xQ  – заданная и непрерывная на интервале ),( dc  функция 

переменной y. 

Действительно, для уравнения (4.1) имеем: 
 

0
)(
=

∂

∂

y

xP
,   0

)(
=

∂

∂

x

xQ
 

и, следовательно, 

                                                        
x

yQ

y

xP

∂

∂
≡

∂

∂ )()(
.                                                   

Обычно уравнения вида (4.1) называют уравнениями с разделенными 
переменными. 

Легко заметить, что уравнение (4.1) можно переписать в виде 
 

                                            ( ) 0)()( =+∫ ∫ dyyQdxxPd .                                       (4.2) 

 

Поэтому общий интеграл уравнения (4.1) (или (4.2)) можно задавать 
следующим образом: 

                                               CdyyQdxxP =+∫ ∫ )()( ,                                          (4.3) 

где C - произвольная постоянная. 
 

Пример 4.1. Найти общий интеграл уравнения 

                                                   0cos
1

=⋅+ dyydx
x

                                                    (4.4) 

РЕШЕНИЕ. Очевидно, что уравнение (4.4) является уравнением с 

разделенными переменными (т.е. уравнением вида (4.1)). Здесь 
x

xP
1

)( = , 

yxQ cos)( = . Поэтому общий интеграл данного уравнения будет иметь вид: 

Cydydx
x

=+ ∫∫ cos
1

  или   Cyx =+ sinln , 
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где C - произвольная постоянная.► 

Замечание 4.1. Следует отметить, что общий интеграл (4.3) уравнения 
(4.1) можно записать и в следующем виде 

                                                CdyyQdxxP

y

y

x

x

=+ ∫∫
00

)()( ,                                            (4.3а) 

где x0 и y0 - некоторые фиксированные числа из интервалов ),( ba  и ),( dc  

соответственно, а C - произвольная постоянная. 
Формула (4.3а) является более предпочтительной, чем (4.3), в тех задачах, 

где требуется найти решение )(xyy =  или )(yxx = , удовлетворяющее начальному 

условию 
00 )( yxy =  или 

00 )( xyx = . В этом случае достаточно в формуле (4.3а) 

положить C = 0. 

Пример 4.2. Найти решение )(yxx =  дифференциального уравнения 

02
1

1

2
=−

+
ydydx

x
, 

удовлетворяющее начальному условию 0)0( =x . 

РЕШЕНИЕ. Здесь 
21

1
)(

x
xP

+
= , yxQ 2)( −= . Следовательно, положив в 

формуле (4.3а) 0
0
=x , 0

0
=y  и C = 0, получим 

[ ] ,02)1(1

00

2

∫∫ =−+

yx

dyydxx  т.е.  0arctg
2
=− yx   или  

2
tgyx = .► 

ОПРЕДЕЛЕНИЕ 4.1. Дифференциальные уравнения вида 
 

                                        0)()()()( 11 =+ dyyNxMdxyNxM ,                                         (4.5) 
 

чьи коэффициенты при dx и dy являются произведениями двух функций, одна из 

которых зависит только от x, а другая зависит только от y, называются 

уравнениями с разделяющимися переменными. 

Всюду в дальнейшем будем предполагать, что в уравнении (4.5) функции 

)(xM  и )(1 xM  непрерывны на некотором интервале ),( ba  оси OX , а )(yN  и 

)(1 yN  - непрерывны на интервале ),( dc  оси OY . 

Сразу заметим, что к уравнениям с разделяющимися переменными 

относятся, в частности, уравнения вида 

                              )()( ygxf
dx

dy
⋅=   или  0)()( =−⋅ dydxygxf ,                                   (4.6) 

 

где f(x) и g(y) – заданные функции, непрерывные на интервалах ),( ba  и ),( dc  

соответственно. 
Далее укажем один из способов решения уравнения вида (4.5). 
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Предполагая, что 
                                                     0)()(1 ≠yNxM                                                        (4.7) 
 

уравнение (4.5) (почленным делением на )()(1 yNxM ) приводится к следующему 

уравнению с разделенными переменными: 

                                              0
)(

)(

)(

)( 1

1

=+ dy
yN

yN
dx

xM

xM
.                                              (4.8) 

Но общий интеграл уравнения (4.8) можно задавать в виде 
 

                                            Cdy
yN

yN
dx

xM

xM
=+∫ ∫ )(

)(

)(

)( 1

1

                                              (4.9) 

или в виде 

                                            ,
)(

)(

)(

)(

0 0

1

1

Cdy
yN

yN
dx

xM

xM
x

x

y

y

=+∫ ∫                                           (4.9а) 

где C - произвольная постоянная. 
Очевидно, что соотношением (4.9) (или (4.9а)) выражается и общий 

интеграл исходного уравнения (4.5), так как всякое решение )(xyy =  (или 

))(yxx =  уравнения (4.8) удовлетворяет и уравнению (4.5). Но уравнение (4.8) мы 

получили из уравнения (4.5) с помощью деления на M1(x)⋅N(y). Поэтому при 

переходе от уравнения (4.5) к уравнению (4.8) мы можем потерять решения, при 

которых 0)()(1 =yNxM . 

Действительно, если 0)()(1 =yNxM , то либо 0)(1 =xM , либо 0)( =yN . 

Проверка показывает, что всякое решение 
0

xx =  уравнения 0)(1 =xM  

удовлетворяет и данному дифференциальному уравнению (4.5), так как 
0)( 01 =xM  и 0

0
=dx . Аналогично любое решение 

0
yy =  уравнения 0)( =yN  также 

удовлетворяет данному дифференциальному уравнению (4.5), потому что 
0)( 0 =yN  и 0

0
=dy . 

Таким образом, если решения вида 
0

yy =  и 
0

xx =  не получаются из общего 

интеграла (4.9) (или (4.9а)) ни при каком значении произвольной постоянной C, 

то их следует добавить к тем решениям, которые неявно задаются формулой 

(4.9). 

Замечание 4.2. Из сказанного выше следует, что для решения уравнения с 
разделяющимися переменными (4.5) надо произвести две квадратуры, т.е. 
вычислить два неопределенных интеграла 

∫ dx
xM

xM

)(

)(

1

  и  ∫ dy
yN

yN

)(

)(1 . 

Пример 4.3. Решить уравнение 
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                                                            yx
dx

dy 2
= .                                                   (4.10) 

РЕШЕНИЕ. Ясно, что уравнение (4.10) является уравнением с 
разделяющимися переменными, так как оно имеет вид (4.6). 

Предполагая 0≠y , разделим в (4.10) переменные. Тогда получим 

dxx
y

dy 2
= . 

Взяв интегралы от обеих частей последнего равенства, будем иметь: 
 

                                ∫ ∫ += Cdxx
y

dy 2      или     ,
3

2

3

C
x

y +=                           (4.11) 

 

где C - произвольная постоянная. Это и есть общий интеграл данного 
дифференциального уравнения (4.10). Разрешив уравнение (4.11) относительно 
y, получим общее решение: 

2
3

2
6 ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+= C

x
y . 

Нетрудно заметить, что функция 0≡y  также является решением данного 

уравнения. Но это решение не получается из общего решения ни при каком 

значении C, т.е. 0≡y  является особым решением. 

ОТВЕТ: 

2
3

26 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+=

Cx
y  или 0≡y  (C - произвольная постоянная).► 

4.2. Дифференциальные уравнения, однородные относительно x и y. В 

этом пункте мы рассмотрим еще один тип дифференциальных уравнений 

первого порядка, интегрируемых в квадратурах. 

ОПРЕДЕЛЕНИЕ 4.2. Функция ),( yxΨ , определенная в области 2
R⊆D , 

называется однородной функцией n-й степени Z∈n( ), если в каждой точке 

Dyx ∈),(  и для любого числа t такого, что точка Dtytx ∈),( , выполняется 

равенство 

),(),( yxttytx
n
Ψ⋅=Ψ    ( Z∈n )

10
. 

 

Пример 4.4. Функция 22 4),( yxyxyxF ++=  является однородной 

функцией второй степени, так как для всех t и 
2),( R∈yx  имеем 

),(),( 2
yxFttytxF ⋅= .► 

Пример 4.5. Функция 
x

y
yx =Φ ),(  является однородной функцией нулевой 

                                                
10

 Здесь предполагается, что 0≠t  при отрицательных значениях n. 
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степени, так как 

),(),( 0
yxttytx Φ⋅=Φ .► 

 

ОПРЕДЕЛЕНИЕ 4.3. Дифференциальное уравнение 1-го порядка 
 

                                                  0),(),( =+ dyyxNdxyxM                                          (4.12) 
 

называется однородным относительно x и y, если в этом уравнении функции 

),( yxM  и ),( yxN  являются однородными функциями одной и той же степени. 
 

Отметим, что если преобразовать однородное относительно x и y 

уравнение (4.12) к виду 

                                                        ),( yxf
dx

dy
= ,                                                   (4.13) 

 

где ),(/),(),( yxNyxMyxf −=  то правая часть (4.13) будет однородной функцией 

нулевой степени, т.е. ),(),(),( 0 yxfyxfttytxf == . Следовательно, можно 

принять следующее 
ОПРЕДЕЛЕНИЕ 4.4. Дифференциальное уравнение 1-го порядка вида 

(4.13) будем называть однородным относительно x и y , если в этом уравнении 

функция ),( yxf   есть однородная функция нулевой степени, непрерывная в 

некоторой области 2
R⊆D . 

В дальнейшем будем изучать однородные относительно x и y 

дифференциальные уравнения, заданные в виде (4.13). 

Покажем, что однородное относительно x и y дифференциальное 
уравнение сводится к уравнению с разделяющимися переменными, и найдем 

способ отыскания его общего интеграла. 
Пусть мы имеем дифференциальное уравнение (4.13), однородное 

относительно переменных x и y. Так как ),( yxf  является однородной функцией 

нулевой степени, то, полагая 
x

t
1

=  ( 0≠x ), будем иметь 

),1(),(),(
x

y
ftytxfyxf == . 

Поскольку в правой части последнего тождества стоит функция от 
аргумента  y/x, то, обозначив )/,1( xyf  через )/( xyϕ  из (4.13), получим 

 

                                                   ⎟
⎠

⎞
⎜
⎝

⎛
=

x

y

dx

dy
ϕ .                                                (4.14) 

 

Заметим, что при всех 0≠x  уравнения (4.13) и (4.14) равносильны. Таким 

образом, однородное относительно x и y дифференциальное уравнение (4.13) 

всегда можно представить в виде (4.14), где )/( xyϕ  - заданная непрерывная на 
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множестве }0,/),{( 2
≠<<∈= xbxyayxG R  функция. 

Далее покажем, что уравнения вида (4.14) сводятся к уравнениям с 
разделяющимися переменными (т.е. всегда интегрируются в квадратурах). 

Действительно, если в выражении )/( xyϕ  переменные x и y уже разделены 

(как, например, в случае 
2

22

x

y

x

y

x

y
=⎟

⎠

⎞
⎜
⎝

⎛
=⎟

⎠

⎞
⎜
⎝

⎛
ϕ ), то (4.14) есть уравнение с 

разделяющимися переменными. 

Если же это условие не выполняется, т.е. переменные x и y в выражении 

функции )/( xyϕ  не разделяются (как, например, в случае xy
exy

/)/( =ϕ ), то 

уравнение (4.14) сводится к уравнению с разделяющимися переменными с 
помощью введения новой неизвестной функции 

 

                                                          
x

y
xU =)( ,                                                      (4.15) 

 

которая связана с искомой функцией )(xyy =  по формуле 
 

                                                     )(xxUy = .                                                        (4.16) 
 

Действительно, из (4.16) имеем )(')(' xxUxUy += . Поэтому, подставляя в 

уравнение (4.14) полученные выражения для y и y', будем иметь: 
 

                       )(' UUxU ϕ=+   или  dxUUxdU ])([ −= ϕ .                            (4.17) 
 

Но последнее уравнение, очевидно, является уравнением с разделяющимися 
переменными. 

Далее предположим, что 0)( ≠−UUϕ . Тогда, разделяя переменные, из 

(4.17) получим 

                                                        .
)( x

dx

UU

dU
=

−ϕ
                                                (4.18) 

 

Следовательно, общий интеграл уравнения (4.17) выразится соотношением 
 

                                                      ,ln
)(

Cx
UU

dU
+=

−∫ϕ                                          (4.19) 

 

где C - произвольная постоянная. 
Подставляя в (4.19) вместо переменной U ее значение y/x, мы получаем 

общий интеграл уравнения (4.13) в области }0,),{( 2
≠<<∈= xb

x

y
ayxG R . 

Замечание 4.3. Здесь при выводе формулы (4.19) мы могли потерять 
решения исходного уравнения (4.13) из-за сделанных нами предположений о 
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том, что 0)( ≠−UUϕ , ),( baU ∈  и 0≠x , т.е. 0)( ≠−
x

y

x

y
ϕ  при b

x

y
a << . 

Действительно, если xyxy /)/( ≡ϕ , то дифференциальное уравнение (4.13) 

принимает вид xydxdy // =  или xdxydy // = , и его общим решением будет 

функция Cxy = , где C - произвольная постоянная. 

Если же при каком-либо 
m

UU =  ( ...,2,1, == mconstU
m

) из ),( ba  

выполняется равенство 0)( =−
mm

UUϕ , то xUy m=  также будет решением 

уравнения (4.17) (значит, и уравнения (4.13)), не содержащимся в (4.19). Поэтому 
все решения вида xUy m=  нужно добавить к полученным по формуле (4.19) 

решениям исходного дифференциального уравнения (4.13). 

Наконец, заметим, что функция 0≡x  также является решением уравнения 
(4.17), не содержащимся в (4.19). Но 0≡x  не всегда является решением 

исходного уравнения (4.13). Например, при 1)/( −≡xyϕ   функция 0≡x  не будет 

решением уравнения (4.13), так как она не удовлетворяет уравнению 1/ −=dxdy  

Если же 
x

y

x

y
−−≡⎟

⎠

⎞
⎜
⎝

⎛
1ϕ , то 0≡x  есть решение уравнения 

yx

x

xydy

dx

+
−==

)(

1

ϕ
. 

Замечание 4.4. На практике общий интеграл (4.19) иногда бывает удобно 
рассматривать в виде 

                                                    ,ln
)(

0

Cx
UU

dU
U

U

+=
−∫ϕ

                                       (4.19а) 

 

где U0 - некоторая фиксированная точка из интервала ),( ba . 

Пример 4.6. Решить уравнение 

                                                         
xy

xy

dx

dy 22
+

= .                                                 (4.20) 

РЕШЕНИЕ. Здесь xyxyyxf /)(),( 22
+=  - однородная функция нулевой 

степени. Следовательно, мы имеем однородное относительно переменных x и y 

уравнение. Перепишем его так: 

                                                           
y

x

x

y

dx

dy
+= .                                                  (4.21) 

Полагая U
x

y
= , получим 

dx

dU
xU

dx

dy
⋅+= . Тогда уравнение (4.21) преобразуется к 

виду 

U
U

dx

dU
xU

1
+=⋅+      или    

x

dx
UdU = . 

Интегрируя обе части последнего уравнения, получим 
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                               Cx
U

+= ln
2

2

   или     CxU 2ln
22
+= ,                                  (4.22) 

где C - произвольная постоянная. Так как xyU /= , то из (4.22) будем иметь: 
 

                                                  ,ln
2

1
222

xCxxy +=                                              (4.23) 
 

где 
1

C  ( CC 2
1
= ) – произвольная постоянная. Это и есть общий интеграл данного 

уравнения (4.20). Очевидно, что здесь функция 0≡x  является решением 

«перевернутого» уравнения  
22 xy

xy

dy

dx

+
= . Поэтому к решениям уравнения (4.20), 

задаваемым по формуле (4.23), нужно добавить и решение 0≡x .► 

 

 

II. КОНТРОЛЬНЫЕ ВОПРОСЫ И ЗАДАНИЯ 
 

1. Какое дифференциальное уравнение называется уравнением с 
разделенными переменными? 

2. Каков общий интеграл уравнения с разделенными переменными? 

3. Какое дифференциальное уравнение называется уравнением с 
разделяющимися переменными? 

4. Каков общий интеграл уравнения с разделяющимися переменными? 

5. Может ли уравнение с разделяющимися переменными иметь особые 
решения? Почему? 

6. Когда функция ),( yxf  называется однородной функцией степени n в 

области 
2

R⊆D ? 

7. Какое дифференциальное уравнение называется однородным 

относительно x и y ? 

8. Каков общий метод решения дифференциального уравнения, 
однородного относительно x и y ? 

9. Могут ли уравнения, однородные относительно x и y, иметь особые 
решения? 

 

III. ПРИМЕРЫ И ЗАДАЧИ ДЛЯ АУДИТОРНОЙ РАБОТЫ 
 

4.1. Найдите общее и особые решения дифференциального уравнения 

0')( 2222
=−++ yxxyxyy . 

 

4.2. Найдите частное решение уравнения xyy ln2'= , удовлетворяющее 

начальному условию  1=
=ex

y . 
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4.3. Решите уравнение )sin(' yxy −= , используя замену переменной. 
 

4.4. Решите дифференциальные уравнения: 

        а) 0)2( =−+ dyxxyydx ;     б) 0)( 22
=−++ xdydxyxy . 

 

4.5. Найдите интегральные кривые, проходящие через точку )1;1(M , для 

следующих уравнений:   а) 
x

y

y

x
y +=' ;     б) y

x

y
xxy += sin' . 

4.6. Решите дифференциальное уравнение  
x

yxy

dx

dy
22

−+
= . 

 

4.7. Найдите кривую, для которой площадь Q фигуры, ограниченной 

искомой кривой, осью OX и двумя прямыми, параллельными оси OY и 

пересекающими ось абсцисс в точках 0 и x, является функцией от y вида: 

.0,ln
2

>= a
a

y
aQ  

 

IV. ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ 
 

4.8. Найдите общее и особые решения дифференциальных уравнений: 

             а) 0)1( 22
=+− dyedxye xx

;         б) 
y

x
yy

21
'

−
= . 

 

4.9. Найдите частное решение дифференциального уравнения 1tg' =− yxy  

удовлетворяющее начальному условию 1

2

=
=
π

x
y . 

 

4.10. Решите дифференциальные уравнения: 

           а) x
x

y
y

x

y
xy −= coscos' ;             б) 

x

y

x

y
y ln'= . 

 

4.11. Найдите интегральную кривую уравнения dxeyxdxyxydy x

y
−

+=−
22 )( ,  

проходящую через точку )1;1(M . 
 

4.12. Найдите интегральную кривую уравнения ,0)1()1( =−++ dy
y

x
edxe y

x

y

x

проходящую через точку )2;0(M . 

 

4.13. Найдите кривую, проходящую через точку )1;1(−M , если угловой 

коэффициент касательной к ней в любой точке равен квадрату ординаты точки 

касания.  
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ЗАНЯТИЕ № 5 
 

Тема: Дифференциальные уравнения 1-го порядка, не разрешенные 
 относительно производной 

 

I. ОСНОВНЫЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ 
 

5.1. Дифференциальные уравнения 1-го порядка, не разрешенные 
относительно производной. Рассмотрим уравнение 1-го порядка 

 

                                                   0)',,( =yyxF ,                                             (5.1) 
 

не разрешенное относительно производной. 

Ниже будут указаны некоторые отличительные особенности 

дифференциальных уравнений вида (5.1) по сравнению с уравнениями, 

разрешенными относительно производной. 

Во-первых, уравнения вида (5.1) могут вовсе не иметь (действительных) 

решений. Например, таким является уравнение 05'
2

=+y . 

Во-вторых, уравнение (5.1), так же как и уравнение, разрешенное 
относительно производной, определяет некоторое поле направлений. Но здесь, 
как правило, в заданной точке ),( 000 yxP  уравнение (5.1) определяет не одно, а 

несколько направлений поля, так как разрешая уравнение  
 

                                           0)',,( 00 =yyxF ,                                                 (5.2) 
 

относительно 'y , можем получить несколько (действительных) решений11
. 

Например, для дифференциального уравнения 1'
2
=y  интегральными 

кривыми служат прямые Cxy +=  и Cxy +−= , где C  - произвольная постоянная. 

Следовательно, через каждую точку ),( 000 yxP  плоскости XOY проходят две 

взаимно перпендикулярные интегральные кривые данного дифференциального 

уравнения, причем поле направлений для уравнения 1'
2
=y  получается 

наложением полей уравнений 1'=y  и 1' −=y . 

Как и в случае уравнения, разрешенного относительно производной, одной 

из важнейших задач для уравнения (5.1) является задача Коши. 

ОПРЕДЕЛЕНИЕ 5.1. Задачей Коши для дифференциального уравнения 

(5.1) называется задача, состоящая в нахождении решений этого уравнения, 

удовлетворяющих начальному условию вида 
 

                                              00
yy xx ==                                                        (5.3) 

 

(что, очевидно, соответствует нахождению интегральных кривых, 

                                                
11

 Вообще говоря, число решений уравнения (5.2) может быть и бесконечным. 
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проходящих через заданную точку ),( 000 yxP ). При этом, если число решений, 

удовлетворяющих поставленному начальному условию (5.3), не больше, чем 

число направлений поля, определяемого уравнением (5.1) в точке ),( 000 yxP  (т.е. 

числа решений уравнения (5.2)), то будем говорить, что задача Коши (5.1), (5.3) 

имеет единственное решение. В противном случае будем говорить, что 

рассматриваемая задача Коши имеет не единственное решение. 

В соответствии с принятым определением, какое-либо конкретное 
решение )(xy ϕ=  дифференциального уравнения (5.1) будем называть частным 

решением, если в каждой точке изображающей его интегральной кривой имеет 

место единственность решения задачи Коши. Если же в каждой точке 
некоторой интегральной кривой )(xy ψ=  дифференциального уравнения (5.1) 

нарушается единственность решения задачи Коши, то такое решение )(xy ψ=  

будем называть особым. 

Справедливо следующее важное утверждение (см. также, например, [16], 

с. 105), указывающее некоторые достаточные условия существования и 

единственности решения задачи Коши (5.1), (5.3). 

Теорема 5.1. Пусть дано дифференциальное уравнение вида (5.1), где 

функция )',,( yyxF  обладает следующими тремя свойствами: 

1) )',,( yyxF  непрерывна в некоторой замкнутой и ограниченной области 

3
R⊆G ; 

2) для некоторой точки ),( 000 yxP  плоскости XOY  число различных 

решений уравнения (5.2) конечно и равно m (пусть этими решениями являются 

числа 
m

bbb ...,,, 21
); 

3) каждая из точек ),,( 00 ii byxM  )...,,2,1( mi =  лежит внутри области G, 

и в некоторой окрестности 
i

V  каждой из этих точек функция )',,( yyxF  имеет 

непрерывные частные производные 
y

F

∂

∂
 и 

'y

F

∂

∂
, причем 0

'
>≥

∂

∂
ε

y

F
. 

Тогда существует окрестность U  точки ),( 000 yxP  на плоскости XOY , 

через каждую точку которой проходит ровно m интегральных кривых 

уравнения (5.1). 

Ясно, что при выполнении условий теоремы 5.1 все решения, графики 

которых лежат в окрестности U  точки ),( 000 yxP , будут частными решениями 

дифференциального уравнения (5.1).  

Для того чтобы говорить об общем решении (общем интеграле) 

дифференциального уравнения вида (5.1), ограничимся далее рассмотрением 

случая, когда, разрешая уравнение (5.1) относительно y', мы получаем конечное 
число вещественных решений: 
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⎢
⎢
⎢
⎢

⎣

⎡

=

⋅⋅⋅⋅⋅

=

=

),,('

),,('

),,('

2

1

yxfy

yxfy

yxfy

m

                                                     (5.4) 

где функции ),( yxfk
 ( mk ...,,2,1= ) определены и непрерывны в некоторой 

области D плоскости XOY . 

Пусть во всякой точке ),( yxM  области D направления поля, определяемые 

каждым из уравнений совокупности (5.4), различны, т.е. интегральные кривые 
различных уравнений совокупности (5.4) не могут касаться друг друга. Кроме 
того, предположим, что для каждого из уравнений совокупности (5.4) задача 
Коши в области D имеет единственное решение (для этого достаточно, чтобы все 
функции ),( yxfk

 ( mk ...,,2,1= ) были непрерывны вместе со своими частными 

производными по y в области D), и пусть 0),,(1 =Φ Cyx , 0),,(2 =Φ Cyx ,…, 

0),,( =Φ Cyxm
 - общие интегралы соответствующих уравнений совокупности 

(5.4) в области D. 

ОПРЕДЕЛЕНИЕ 5.2. Совокупность общих интегралов 
 

                                                

⎢
⎢
⎢
⎢

⎣

⎡

=Φ

⋅⋅⋅⋅⋅

=Φ

=Φ

0),,(

,0),,(

,0),,(

2

1

Cyx

Cyx

Cyx

m

                                                 (5.5) 

 

будем называть общим интегралом дифференциального уравнения (5.1) в 
области D. 

Часто вместо совокупности уравнений (5.5) пишут равносильное ей одно 
уравнение вида 

                             0),,(...),,(),,( 21 =Φ⋅⋅Φ⋅Φ CyxCyxCyx m
.                           (5.6) 

 

Важно заметить, что при сделанных выше предположениях в каждой точке 

),( yxM  области D имеет место единственность решения задачи Коши для 

уравнения (5.1). 

Пример 5.1. Найти общий интеграл дифференциального уравнения 

                                               0
4

2

=−⎟
⎠

⎞
⎜
⎝

⎛
−ʹ

x

x

y
y ,                                               (5.7) 

РЕШЕНИЕ. Разрешая относительно y' данное уравнение, получаем 

совокупность двух уравнений вида 

                                                 

⎢
⎢
⎢
⎢

⎣

⎡

−=ʹ

+=ʹ

,
2

,
2

x

x

y
y

x

x

y
y

                                                  (5.8) 
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правые части которых являются непрерывными функциями (вместе со своими 

частными производными по y) в полуплоскости 0>x . 

Общее решение первого из уравнений (5.8) имеет вид 3
xCxy += , а 

второго - 3
xCxy −= , где С – произвольная постоянная. Оба эти решения можно 

задавать одним соотношением вида 

                                           0)( 32
=−− xCxy ,                                                 (5.9) 

 

т.е. уравнение (5.9) есть общий интеграл дифференциального уравнения (5.7) в 
полуплоскости 0>x .► 

Заметим, что через каждую точку полуплоскости 0>x  проходят две 
интегральные кривые уравнения (5.7). Так, например, начальному условию 

2
1
=

=x
y  удовлетворяют два частных решения: 3

xxy +=   и  3
3 xxy −= . 

Особые решения для дифференциальных уравнений вида (5.1), как 
правило, ищутся среди кривых, получающихся исключением y' из системы 

 

                                            
⎪
⎩

⎪
⎨

⎧

=
∂

∂

=

.0
'

,0)',,(

y

F

yyxF

                                                  (5.10) 

Такие кривые называются дискриминантными кривыми 

дифференциального уравнения (5.1). 

Однако не всякая дискриминантная кривая является (особым) решением 

данного дифференциального уравнения. Поэтому, найдя дискриминантную 

кривую, обязательно нужно проверить, является ли она интегральной кривой 

данного дифференциального уравнения и нарушается ли в каждой ее точке 
единственность решения задачи Коши (более подробно с особыми решениями и 

их свойствами можно познакомиться, например, в §4 гл.III книги [21]). 

В заключение этого пункта рассмотрим некоторые классы уравнений вида 
(5.1), при интегрировании которых удобно использовать так называемый метод 

введения параметра. Этот метод позволяет свести дифференциальное уравнение 
(5.1) к уравнению, разрешенному относительно производной (для 
обстоятельного знакомства с методом введения параметра автор рекомендует 
читателю, например, книги [20], [21]). 

5.2. Уравнения, разрешимые явно относительно y, т.е. уравнения  вида 
 

                                                )',( yxfy = .                                                  (5.11) 

Вводя в уравнение (5.11) параметр 'yp = , получаем ),( pxfy = . Далее, 

взяв полный дифференциал от обеих частей последнего равенства, будем иметь: 

dp
p

pxf
dx

x

pxf
dy

∂

∂
+

∂

∂
=

),(),(
. Наконец, в полученном равенстве с учетом dxydy '=  
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заменяем dy  на pdx (чтобы исключить y ). Тогда получаем следующее 

дифференциальное уравнение:  dp
p

pxf
dx

x

pxf
pdx

∂

∂
+

∂

∂
=

),(),(
  или  

                                           
dx

dp

p

pxf

x

pxf
p

∂

∂
+

∂

∂
=

),(),(
.                                 (5.12) 

Очевидно, что последнее дифференциальное уравнение легко разрешимо 

относительно производной 
dx

dp . Предположим, что 0),,( =Φ Cpx  - общий 

интеграл дифференциального уравнения (5.12). Тогда система уравнений 

                                                   
⎩
⎨
⎧

=

=Φ

),,(

0),,(

pxfy

Cpx
                                                    

где p - параметр, определяет семейство интегральных кривых исходного 

дифференциального уравнения (5.11). 

Пример 5.2. Решите дифференциальное уравнение  
 

                                                    
3)'('2 yxyy −= .                                           (5.13) 

РЕШЕНИЕ. Полагая 'yp =  будем иметь: 3
2 pxpy −= . Отсюда, 

дифференцируя по х, получим 

                                              
dx

dp
pxpp )32(2 2

−+= .                                   (5.14) 

Предположив, что 0≠
dx

dp
p , а затем, разделив обе части уравнения (5.14) на 

dx

dp
p , будем иметь: px

pdp

dx
3

2
=+ . Но последнее уравнение является линейным 

неоднородным дифференциальным уравнением относительно x, и его общее 
решение можно задавать так: 

                                                   2

2
4

3
p

p

C
x += ,                                                  

где C  - произвольная постоянная. Следовательно, интегральные кривые 
уравнения (5.13) определяются следующей системой уравнений: 
 

                                                  
⎪
⎩

⎪
⎨

⎧

−=

+=

.2

,
4

3

3

2

2

pxpy

p
p

C
x

                                             (5.16) 

Важно еще заметить, что поскольку при переходе от уравнения (5.14) к 

уравнению (5.15) было сделано предположение 0≠
dx

dp
p , то нужно проверить, не 

теряются ли при этом решения уравнения (5.14), удовлетворяющие условию 

0=
dx

dp
p . Так как из последнего равенства следует 0=p  или 

0
pp = , где 
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0
0

≠= constp , причем из них лишь 0=p  является решением уравнения (5.14), то 

очевидно, что в семейство интегральных кривых (5.16) не входит лишь то 
решение исходного уравнения (5.13), которое соответствует значению параметра 

0=p , т.е. решение вида 0=y . Значит, к решениям, задаваемым системой (5.16), 

нужно добавить и решение вида 0=y .► 

5.3. Уравнения, разрешимые явно относительно x, т.е. уравнения  вида 
 

                                                 )',( yyfx = .                                                  (5.17) 

В этом случае также введем параметр 'yp = . Тогда из (5.17) будем иметь: 
 

                       ),( pyfx =   и  dp
p

pyf
dy

y

pyf
dx

∂

∂
+

∂

∂
=

),(),(
.                        (5.18) 

 

Поскольку dxydy '= , то с учетом (5.18) получим 
 

      
⎭
⎬
⎫

⎩
⎨
⎧

∂

∂
+

∂

∂
= dp

p

pyf
dy

y

pyf
pdy

),(),(
  или  

dy

dp

p

pyf

y

pyf

p ∂

∂
+

∂

∂
=

),(),(1
.     (5.19) 

 

Пусть 0),,( =Φ Cpx  - общий интеграл дифференциального уравнения 

(5.19). Тогда система уравнений  

                                               ⎩
⎨
⎧

=

=Φ

),,(

0),,(

pyfx

Cpx
   

 

где p  - параметр, определяет семейство интегральных кривых исходного 

дифференциального уравнения (5.17). 

Пример 5.3. Решите дифференциальное уравнение  

                                                    ( ) 09'4
2

=− xy .                                         (5.20) 

РЕШЕНИЕ. Данное уравнение можно переписать в виде: 2)'(
9

4
yx = . Введя 

в последнем уравнении параметр 'yp = , получаем: 2

9

4
px = . Отсюда, 

дифференцируя, находим: pdpdx
9

8
=  или (с учетом dxydy '= ) dppdy 2

9

8
= . 

Наконец, с помощью интегрирования, из последнего уравнения будем иметь: 

Cpy +=
3

27

8
, где C  - произвольная постоянная. Итак, семейство интегральных 

кривых уравнения (5.20) можно задавать так:  

                                                   

⎪
⎪
⎩

⎪⎪
⎨

⎧

+=

=

.
27

8

,
9

4

3

2

Cpy

px

                                           (5.21) 
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Здесь, исключив из системы (5.21) параметр p , искомое семейство 

интегральных кривых уравнения (5.20) можно задавать явным уравнением вида  

                                                 Cxxy += , 

где C  - произвольная постоянная. ► 

5.4. Составление дифференциального уравнения 1-го порядка по его 
общему интегралу. Мы уже отмечали, что одной из основных задач теории 

дифференциальных уравнений 1-го порядка является следующая. 
Дано дифференциальное уравнение 0)',,( =yyxF . Нужно найти его общий 

интеграл. 

Однако в теории дифференциальных уравнений и в приложениях не менее 
важное значение имеет обратная задача:  найти дифференциальное уравнение     

1-го порядка, общий интеграл которого задан. 

Ниже укажем способ решения последней задачи. 

Пусть общий интеграл искомого дифференциального уравнения 1-го 
порядка (5.1) задается в виде 

                                                 0),,( =Φ Cyx ,                                              (5.22) 

где C - произвольная постоянная. 
Уравнение (5.22) определяет для каждого значения C ту или иную 

интегральную кривую )(xyy = . Подставив в (5.22) вместо переменной y 

функцию )(xy , получим некоторое тождество (относительно переменной x ). 

Дифференцируя полученное тождество по x (при заданном значении С ), 

находим соотношение между координатами точки и угловым коэффициентом 

интегральной кривой )(xyy =  в этой точке:  

                                    0),,(),,( //
=⋅Φ+Φ

dx

dy
CyxCyx yx .                                (5.23) 

Если уравнение (5.23) не содержит C, то оно уже является 
дифференциальным уравнением семейства кривых, определяемых уравнением 

(5.22). Если же в уравнение (5.23) входит C, то для того, чтобы найти 

соотношение между x, y и y', пригодное для всех точек любой интегральной 

кривой, надо исключить C из системы уравнений12
 

                                                
( )

⎩
⎨
⎧

=ʹ⋅Φʹ+Φʹ

=Φ

.0

,0,,

y

Cyx

yx

                                        (5.24) 

 

Пример 5.4. Найти дифференциальное уравнение, общий интеграл 
которого задается уравнением 

                                               1)( 22
=+− yCx .                                            (5.25) 

                                                
12Другими словами, найдя значение С из одного уравнения данной системы, подставить его (т.е. 

найденное значение С) в другое уравнение этой системы. 
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РЕШЕНИЕ. Дифференцируя обе части  (5.25) по x, получим 
 

                                       0'2)(2 =⋅+− yyCx .                                                  

Далее, исключая параметр С из системы уравнений 
⎩
⎨
⎧

=⋅+−

=+−

,0'2)(2

,1)( 22

yyCx

yCx
 

будем иметь: 1
222
=+ʹ yyy . Это и есть искомое дифференциальное уравнение. ► 

 

II. КОНТРОЛЬНЫЕ ВОПРОСЫ И ЗАДАНИЯ 
 

1. Что называется решением уравнения 0)',,( =yyxF  ? 

2. Сформулируйте задачу Коши для уравнения 0)',,( =yyxF . 

3. Что надо понимать под частным решением (особым решением) 

дифференциального уравнения 0)',,( =yyxF  ? 

4. Как можно найти общее решение (общий интеграл) дифференциального 
уравнения 0)',,( =yyxF , если в некоторой области D оно распадается на 

конечное число уравнений, разрешенных относительно производной? 

5. В чем состоит суть метода введения параметра при интегрировании 

дифференциальных уравнений вида 0)',,( =yyxF ?  Какой параметр нужно ввести 

при решении уравнения вида )',( yxfy =   ( )',( yyfx = )? 

6. Как восстановить дифференциальное уравнение 0)',,( =yyxF  по его 

общему интегралу? 
 

III. ПРИМЕРЫ И ЗАДАЧИ ДЛЯ АУДИТОРНОЙ РАБОТЫ 
 

5.1. Проинтегрировать следующие дифференциальные уравнения: 

        а) y
eyy

ʹ
=

2
' ;          б) 2'2'

2
+−= yyx . 

 

5.2. Найдите общие и особые решения следующих уравнений: 

        а) )1(4)32(' 22
yyy −=− ;          б) 0''

2
=+−

x
eyyy . 

 

5.3. Составьте дифференциальные уравнения семейств линий: 

        а) Cxy = ;        б) Cxyx =−
22

;       в) constaaey
ax

== ,
/

. 

 

IV. ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ 
 

5.4. Проинтегрировать следующие дифференциальные уравнения: 
        а) 'ln' yyy = ;          б) 'sin' yyx += . 

5.5. Найдите общее и особые решения уравнения  04'2'
2

=+− xyyxy . 
 

5.6. Составьте дифференциальные уравнения семейств линий: 

        а) axy sin= ;       б) 2/2
2

2
1 y

Ce
x

y
−

+=+ . 
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ЗАНЯТИЕ № 6 

 

Тема: Дифференциальные уравнения высших порядков. Задача 
Коши. Уравнения высших порядков, допускающие понижение порядка 

 
I. ОСНОВНЫЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ 

 

6.1. Дифференциальные уравнения высших порядков. Задача Коши. 

Понятия общего и частного решений. Пусть 1, >∈ nn N . В этом пункте 

рассмотрим задачу Коши и теорему существования и единственности решения 
этой задачи для уравнений высших порядков вида 

 

                                    )...,,',,( )1()( −
=

nn yyyxfy .                                          (6.1) 
 

Напомним, что решением дифференциального уравнения (6.1) называется 

всякая функция )(xy ϕ= , определенная на некотором промежутке baE ,=  

вместе со своими производными до n-го порядка включительно, которая 

обращает это уравнение в тождество: ))(...,),('),(,()( )1()( xxxxfx nn −≡ ϕϕϕϕ  на Е. 

При этом график функции )(xy ϕ=  называется интегральной кривой уравнения 

(6.1). 

Вообще говоря, если дифференциальное уравнение (6.1) имеет решения, то 
этих решений будет бесконечно много. Поэтому для того чтобы из множества 
всех решений выделить какое-либо конкретное, надо задать так называемые 
начальные условия: 

                             ,...,,, )1(
0

)1(/
0

/
0

000

−

=

−

==
===

n

xx

n

xxxx
yyyyyy                   (6.2) 

 

где )1(
0

/
000 ...,,,, −n

yyyx  - некоторые числа. 

Задача Коши для дифференциального уравнения (6.1) ставится так: найти 
решение )(xyy =  дифференциального уравнения (6.1), удовлетворяющее 

заданным начальным условиям (6.2). 

Сформулируем теперь теорему существования и единственности решения 
задачи Коши для уравнения (6.1) (см. также, например, [21], с. 140). 

 

Теорема Коши. Если в уравнении (6.1) функция )...,,',,( )1( −nyyyxf  и ее 

частные производные 1-го порядка по 
)1(...,,', −n

yyy  непрерывны в некоторой 

области 
1+

⊆
n

G R , то для любой точки )...,,,,(
)1(

0
/
0000

−n
yyyxP ∈G на некотором 

промежутке hxxhx +≤≤−
00

 )0( >h  существует единственное решение 

)(xyy =  уравнения (6.1), удовлетворяющее начальным условиям (6.2). 
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Введем теперь некоторые основные понятия. 
ОПРЕДЕЛЕНИЕ 6.1. Начальные условия (6.2) называются обыкновенными 

начальными условиями для уравнения (6.1), если в )1( +n -мерной точке 

)...,,,,(
)1(

0
/
0000

−n
yyyxP  и в некоторой ее окрестности функция )...,,',,( )1( −nyyyxf  

непрерывна вместе со своими частными производными первого порядка по 
)1(...,,', −n

yyy . 

ОПРЕДЕЛЕНИЕ 6.2. Начальные условия (6.2) называются особыми для 

уравнения (6.1), если в точке )...,,,,(
)1(

0
/
0000

−n
yyyxP  терпит разрыв хотя бы одна из 

функций ///
)1(/ ...,,,, −nyyy ffff . 

В дальнейшем, говоря о начальных условиях задачи Коши для уравнения 
(6.1), мы будем иметь в виду лишь обыкновенные начальные условия. 

Пусть G - область из 1+n
R , в которой выполняются условия теоремы Коши 

для уравнения (6.1). 

ОПРЕДЕЛЕНИЕ 6.3. Общим решением дифференциального уравнения       
n-го порядка (6.1) в области G называется функция 

 

                                          )...,,,,( 21 nCCCxy ϕ= ,                                            (6.3) 
 

зависящая от n произвольных постоянных 
n

CCC ...,,, 21
 и обладающая 

следующими свойствами: 

1) при любых допустимых значениях постоянных 
n

CCC ...,,, 21
 она является 

решением дифференциального уравнения (6.1), т.е. 
 

))...,,,,(...,),...,,,,(,()...,,,,( 21
)1(

2121
)(

n
n

nn
n CCCxCCCxxfCCCx −≡ ϕϕϕ  

 

на некотором интервале 0),,( 00 >+− hhxhx ; 

2) для любой точки )...,,,,(
)1(

0
/
0000

−n
yyyxP ∈G можно так подобрать значения 

постоянных 00
22

0
11 ...,,,

nn
CCCCCC === , чтобы решение вида )...,,,,( 00

2
0
1 nCCCxy ϕ=  

удовлетворяло начальным условиям (6.2). 

ОПРЕДЕЛЕНИЕ 6.4. Решение, получаемое из общего решения (6.3) при 

конкретных значениях постоянных 00
22

0
11 ...,,,

nn
CCCCCC === , называется 

частным решением дифференциального уравнения (6.1), т.е. функция вида 

)...,,,,( 00
2

0
1 nCCCxy ϕ=  - частное решение. 

ОПРЕДЕЛЕНИЕ 6.5. Уравнение вида 
 

                                       0)...,,,,,( 21 =Φ nCCCyx ,                                        (6.4) 
 

неявно определяющее общее решение (6.3), называют общим интегралом 

дифференциального уравнения (6.1). 



59 

 

Частным интегралом дифференциального уравнения (6.1) называют 

соотношение 0)...,,,,,( 00
2

0
1 =Φ nCCCyx , полученное из общего интеграла путем 

фиксирования значений 00
22

0
11 ...,,,

nn
CCCCCC ===  произвольных постоянных. 

 

Пример 6.1. Показать, что функция xCxCy cossin
21

+=  является общим 

решением уравнения 0'' =+yy  на евклидовой плоскости R
2.
. 

РЕШЕНИЕ. Во-первых, нетрудно проверить, что при любых значениях С1 

и С2 (из R) эта функция удовлетворяет данному дифференциальному уравнению 

на промежутке ),( ∞+−∞ . 

Во-вторых, для любой точки ),,( /
0000 yyxP ∈R

3
 найдутся такие значения 0

1
C  

и 
0

2
C , что функция xCxCy cossin

0

2

0

1
+=  удовлетворяет начальным условиям 

 

                                          
/
0

/
0

00
, yyyy

xxxx
==

==
.                                     (6.5) 

 

Действительно, равенства (6.5) для функции xCxCy cossin
21

+=  

принимают вид: 

                                         
⎩
⎨
⎧

ʹ=−

=+

.sincos

cossin
  

00201

00201

yxCxC

yxCxC
                                    (6.6) 

 

Решая систему (5.6) относительно параметров 21, CC , будем иметь: 
 

                                            
 .sincos

,cossin 

0000
0
2

0000
0
1

xyxyC

xyxyC

ʹ−=

ʹ+=
                                  (6.7) 

 

Итак, функция xCxCy cossin
0

2

0

1
+= , где 0

1
C  и 

0

2
C  определяются по 

формулам (6.7), удовлетворяет начальным условиям (6.5).► 

Замечание 6.1. Важно заметить, что функции xy sin=  и xy cos=  являются 

частными решениями  дифференциального уравнения 0'' =+yy . 
 

6.2. Некоторые дифференциальные уравнения высших порядков, 

допускающие понижение порядка. В некоторых случаях общее 
дифференциальное уравнение n-го порядка ( 1>n ) 

 

                                          0)...,,',,( )(
=

n
yyyxF                                             (6.8) 

 

может быть приведено с помощью какого-либо приема (например, с помощью 

некоторой замены переменной) к решению нового дифференциального 
уравнения более низкого порядка. В этом случае говорят, что уравнение (6.8) 

допускает понижение порядка. 

Например, пусть дано уравнение 0''' =+yy . Вводя новую функцию 'yu = , 
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данное уравнение можно привести к уравнению 1-го порядка 0' =+uu . 

Прежде чем рассмотреть некоторые виды дифференциальных уравнений 

высших порядков, допускающих понижение порядка, найдем общее решение 
простейшего уравнения вида 

                                              )()( xfy n
= ,                                                       (6.9) 

 

где )(xf  - функция, непрерывная на некотором промежутке baE ,= . 

Учитывая, что 
dx

dy
y

n
n

)1(
)(

−

= , перепишем уравнение (6.9) в таком виде: 

dxxfdy n )()1(
=

−
. Интегрируя обе части этого уравнения, будем иметь: 

 

1
)1( )( Cdxxfy n

+= ∫
− , 

 

т.е. получаем уравнение того же вида, что и (6.9). 

С помощью интегрирования из последнего уравнения получаем: 
 

( )∫ ∫ ∫∫ ++=++=−
2121

)2( )()( CxCdxxfdxCdxCdxxfy n . 
 

Как мы видим, с каждым шагом интегрирования порядок уравнения 
понижается на единицу. Через n шагов интегрирования мы получим общее 

решение дифференциального уравнения (6.9): 
 

               nn

nn

разn

CxC
n

x
C

n

x
Cdxxfdxdxy +++

−
+

−
+= −

−−

∫ ∫ ∫ 1

2

2

1

1
)!2()!1(

)( !
""" #""" $%

! ,     (6.10) 

 

где С1, С2, ..., Сn – произвольные постоянные. 
Отметим, что здесь правая часть уравнения (6.9), т.е. функция f(x), не 

зависит от y, y',..., y
(n-1)

. Поэтому любые начальные условия вида  
 

                     
)1(

0
)1(/

0
/

0
000

...,,,
−

=

−

==
===

n

xx

n

xxxx
yyyyyy                        (6.11) 

 

(при x0∈Е) являются обыкновенными для дифференциального уравнения (6.9). 

Следовательно, каковы бы ни были начальные условия (6.11), уравнение (6.9) 

имеет единственное решение, удовлетворяющее этим условиям (что вытекает из 
теоремы Коши). 

Пример 6.2. Решить уравнение xxy cos2sin'''
3

= . 

РЕШЕНИЕ. Перепишем данное уравнение в таком виде 
x

x
y

3
sin

cos2
''' = . Это 

уже уравнение вида (6.9). Последовательным интегрированием найдем: 
 

              ∫ ∫ +−=+=+= 121313 sin

1

sin

)(sin
2

sin

cos2
'' C

x
C

x

xd
Cdx

x

x
y , 
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              ∫ ∫ ++=++−=+⎟
⎠

⎞
⎜
⎝

⎛
+−=

21212212
sinsin

1
' CxCxctgCxC

x

dx
CdxC

x
y , 

 

               
( )

∫

∫∫

+++=+++=

=+++=+++=

.
2

sinln
2sin

)(sin

2sin

cos

2

32
21

32
21

32
21

32
21

CxCx
C

xCxCx
C

x

xd

CxCx
C

dx
x

x
CxCx

C
dxxctgy

 

Ответ: 32

21

2
sinln CxCx

С
xy +++= .► 

 

6.2.1. Дифференциальные уравнения высших порядков, явно не 
содержащие неизвестной функции, т.е. уравнения вида 

 

                                      0)...,,'',',( )(
=

n
yyyxF .                                           (6.12) 

 

С помощью замены переменной 
 

                                                   zy ='                                                           (6.13) 
 

(здесь )(xzz =  - новая неизвестная функция!) уравнение (6.12) приводится к виду 
 

                                       0)...,,',,( )1(
=

−n
zzzxF .                                          (6.14) 

 

Это уже уравнение (n-1)-го порядка. 
Допустим, что общее решение уравнения (6.14) имеет вид: 
 

                                       ),,,( 11 −=
n

CCxz !ϕ . 
 

Отсюда, в силу zy =' , приходим к уравнению  ),,,(' 11 −= nCCxy !ϕ . Но 

решение последнего уравнения задается в виде ∫ += − nn CdxCCxy ),...,,( 11ϕ , где С1, 

С2, ..., Сn – произвольные постоянные. Это и будет общим решением 

дифференциального уравнения (6.12). 

Пример 6.3. Решить уравнение 
 

                                               01)'('' 2
=++ yy .                                              (6.15) 

 

РЕШЕНИЕ. Полагая 'yz =  и учитывая, что 
dx

dz
y ='' , перепишем уравнение 

(6.15) в виде 01
2

=++ z
dx

dz
. Далее, разделяя переменные, будем иметь: 

.
1

2
dx

z

dz
−=

+
 Отсюда, интегрируя, получим: 

1arctg Cxz +−=  или )(tg 1Cxz +−= . Но 

так как 'yz = , то предыдущее уравнение можно записать так: )(tg 1Cx
dx

dy
+−= . 



62 

 

Решая последнее уравнение, окончательно получаем 

       .)cos(ln
)cos(

)sin(
)( 212

1

1
21 CCxCdx

Cx

Cx
CdxCxtgy ++−=+

+−

+−
=++−= ∫ ∫  

 

Ответ: 21)cos(ln CCxy ++−= , где С1, С2 – произвольные постоянные.► 
 

Замечание 6.2. Если имеем уравнение вида 
 

0)...,,,,( )()1()(
=

+ nkk yyyxF , 
 

то с помощью замены переменного )(kyz =  оно сводится к уравнению  
 

0)...,,',,( )(
=

−kn
zzzxF , 

 

чей порядок ниже порядка исходного уравнения на k единиц. 
 

6.2.2 Дифференциальные уравнения высших порядков, явно не 
содержащие независимого переменного, т.е. уравнения вида 

 

                                          0)...,,',( )(
=

n
yyyF .                                            (6.16) 

 

Для понижения порядка такого уравнения следует сделать замену 
переменной uy =' , считая при этом u новой неизвестной функцией, зависящей от 

y, и рассматривая, таким образом, y как новое независимое переменное, т.е. 

)(yuu = . 

После такой замены получим дифференциальное уравнение (n-1)-го 
порядка, связывающее y, u и производные от u по y. Не останавливаясь на общем 

случае уравнения (6.16) n-го порядка, убедимся в справедливости высказанного 
утверждения для уравнений 2-го порядка вида 

 

                                              0)'',',( =yyyF .                                               (6.17) 
 

Положим uy =' , где )(yuu = . Тогда будем иметь: 
 

dy

du
u

dx

dy

dy

du

dx

du

dx

yd
y ===

ʹ
=

)(
''  

 

(здесь мы учли, что ))(( xyuu =  - сложная функция от х). Итак, имеем uy =' , 

dy

du
uy ='' . Подставляя полученные выражения для y' и y'' в (6.17), получим 

                                                0),,( =
dy

du
uuyF .                                           (6.18) 

 

Уравнение (6.18) есть дифференциальное уравнение 1-го порядка. 
Предположим, что функция ),( 1Cyu ϕ=  является общим решением 
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уравнения (6.18). Тогда, заменяя u на 
dx

dy
, получим уравнение ),( 1Cy

dx

dy
ϕ= , в 

котором переменные разделяются (при условии ϕ(y, C1) ≠ 0): 

dx
Cy

dy
=

),( 1ϕ . 

Отсюда, интегрируя, находим общий интеграл уравнения (6.17) в виде:  
 

∫ += 2

1),(
Cx

Cy

dy

ϕ
, 

 

где С1, С2 – произвольные постоянные. 
 

Пример 6.4. Решить уравнение 
 

                                                      0)'('' 2
=+ yyy .                                       (6.19) 

 

РЕШЕНИЕ. Уравнение (6.19) явно не содержит независимого 
переменного, т.е. относится к уравнениям вида (6.16). Положим )(' yuy = . Тогда 

. Следовательно, данное уравнение (6.19) принимает вид: 

0
2
=+ u

dy

du
yu . 

Разделив обе части на u (при u ≠ 0), получим 0=+ u
dy

du
y . Это уравнение   

1-го порядка с разделяющимися переменными. Решая его, находим:
 
 

y

C
u

*

1= , где 

*

1
C  - произвольная постоянная. Поскольку uy =' , то будем иметь: 

y

C
y

*

1
'= . Отсюда 

имеем *

2

*

1

2

2
CxC

y
+=  или 

21

2
CxCy += , где С1, С2 – произвольные постоянные. 

Итак, общий интеграл данного уравнения имеет вид: 
21

2
CxCy += , где  С1, 

С2 – произвольные постоянные.►  

 

II. КОНТРОЛЬНЫЕ ВОПРОСЫ И ЗАДАНИЯ 
 

1. Сформулируйте задачу Коши для дифференциального уравнения 

высшего порядка вида  ( ) ( ))1(...,,'',',, −= nn yyyyxfy . 

2. Сформулируйте теорему о существовании и единственности решения 

задачи Коши для уравнения ( ) ( ))1(...,,'',',, −= nn yyyyxfy . 

dy

du
uy =''
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3. Дайте определение общего решения (общего интеграла) 

дифференциального уравнения ( ) ( ))1(...,,'',',, −= nn yyyyxfy . 

4.  Что называется частным решением (частным интегралом) 

дифференциального уравнения ( ) ( ))1(...,,'',',, −= nn yyyyxfy  ? 

5. Каково общее решение дифференциального уравнения ( ) ( )xQy
n = , где  

)(xQ  - заданная на некотором интервале ),( ba  непрерывная функция ? 

6. Как достигается понижение порядка уравнения 
( ) ( ) ( )( ) 0...,,,,

1 =+ nkk yyyxF ? 

7. Какой подстановкой достигается понижение порядка 

дифференциального  уравнения ( )( ) 0...,,, =ʹ n
yyyF  ? 

 

 

III. ПРИМЕРЫ И ЗАДАЧИ ДЛЯ АУДИТОРНОЙ РАБОТЫ 

 

6.1. Решите дифференциальные уравнения: 
 

а) ( ) 011
22 =+ʹ+ʹ́+ yyx ;       б) yyyyy ln

22
=ʹ−ʹ́ ;        в) 

x

y
yyx

ʹ
ʹ=ʹ́ ln . 

 

6.2. Найдите частное решение дифференциального уравнения 

yyy ʹ́=ʹ+ 21
2

 при начальных условиях: 1
11
=ʹ=

== xx
yy . 

 

6.3. Найдите частное решение уравнения xxyy 2sin2tg''' =+ , 

удовлетворяющее начальным условиям: 0',1
00
=−=

== xx
yy . 

 
 

IV. ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ 

 

6.4. Решите дифференциальные уравнения: 
 

а) ( ) 031
22 =ʹ́ʹ−ʹ+ʹ́ʹ yyyy ;  б) 

2
1 xyx +=ʹ́ ,  в) y

eyy
−

=ʹ−ʹ́ 2
2

.  

 

6.5. Найдите частное решение дифференциального уравнения 
32
'''' yyyy =+ , удовлетворяющее начальным условиям: 0',1

00
=−=

== xx
yy . 

 

6.6. Найдите частное решение уравнения  x
exyxy

2
''' =− , удовлетворяющее 

начальным условиям: 0',1
11
=−=

== xx
yy . 
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ЗАНЯТИЕ № 7 
 

Тема: Линейные дифференциальные  уравнения  2-го порядка. 
Фундаментальная система решений. Структура общего решения.  

Метод вариации произвольных постоянных 
 

I. ОСНОВНЫЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ 
 

7.1. Теорема существования и единственности решения для линейных 
дифференциальных уравнений высших порядков. Среди всевозможных 
типов дифференциальных уравнений высших порядков самыми простыми для 
исследования являются так называемые линейные уравнения. Вместе с тем класс 
линейных уравнений является самым важным в связи со следующими 

обстоятельствами: во-первых, они широко используются в физике, механике и 

технике; во-вторых, когда та или иная практическая задача приводит к 
нелинейному (более сложному) дифференциальному уравнению, очень часто 
оказывается возможным найти приближенное решение задачи, заменяя 
полученное нелинейное уравнение «близким» ему линейным (т.е. линеаризовать 
задачу). 

ОПРЕДЕЛЕНИЕ 7.1. Дифференциальное уравнение n-го порядка 

0)...,,',,( )(
=

n
yyyxF  

называется линейным, если выражение, стоящее в левой части, является 
линейной функцией от y, y', …, y

(n)
, т.е. если это уравнение имеет вид 

 

             ),()(')(...)()( 1
)1(

1
)(

0 xByxAyxAyxAyxA nn
nn

=++++ −
−                       (7.1) 

 

где −)(),(...,),(),( 10 xBxAxAxA
n

 заданные на некотором промежутке 〉〈= baE ,  

функции от x (в частности, некоторые из них или даже все, могут быть 
постоянными). 

Полагая, что 0)(0 ≠xA  на E, и деля обе части (7.1) на )(0 xA , получаем 
 

                      ).()(')(...)( 1
)1(

1
)( xbyxayxayxay nn

nn
=++++ −

−                         (7.2) 
 

Уравнение (7.2) называется линейным уравнением n-го порядка 

нормального вида. 

В дальнейшем, говоря о линейном дифференциальном уравнении n-го 
порядка, мы будем иметь в виду уравнение (7.2). Обычно функции 

)(...,),(),( 21 xaxaxa
n

 называются коэффициентами уравнения (7.2), а )(xb  – 

правой частью или свободным членом этого уравнения. 
Предположим теперь, что коэффициенты )(...,),(),( 21 xaxaxa

n
 и свободный 

член )(xb  уравнения (7.2) непрерывны на промежутке 〉〈= baE , . Перепишем 

уравнение (7.2) в следующем виде 
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                 ).()(')(...)( 1
)1(

1
)( xbyxayxayxay nn

nn
+−−−−= −

−                           (7.3) 
 

Правая часть уравнения (7.3), если её рассматривать как функцию от n+1 

переменных )(...,,',, n
yyyx , непрерывна при всех x∈E  и любых значениях 

)(...,,', n
yyy , причем частные производные от правой части (7.3) по )(...,,', n

yyy  

непрерывны (они равны соответственно )(...,),(),( 11 xaxaxa
nn

−−− −
. Таким 

образом, для уравнения (7.3) (или то же самое (7.2)) условия теоремы Коши 

выполняются в любой точке 2)( )...,,',,( +
∈

nn
yyyx R  такой, что x∈E. 

Следовательно, согласно теореме Коши для дифференциальных уравнений n-го 
порядка получаем, что существует единственное решение )(xyy = , 

определенное на E и удовлетворяющее начальным условиям: 
 

                    ,...,,,
)1(

0
)1(/

0
/

0
000

−

=

−

==
===

n

xx

n

xxxx
yyyyyy                           (7.4) 

 

где )1...,,1,0(,
)(

00 −=+∞<<∞−∈ nkyEx
k . 

Сформулируем полученный результат в виде следующей теоремы. 

Теорема Коши (для линейных уравнений n-го порядка). Если 
коэффициенты )(...,),(),( 21 xaxaxa

n
 и свободный член b(x) уравнения (7.2) 

непрерывны на промежутке E, то, каковы бы ни были начальные условия (7.4), 

существует единственное решение )(xyy =  уравнения (7.2), определенное на Е 

и удовлетворяющее этим начальным условиям. 

Из этой теоремы видно, что для линейного уравнения любые начальные 
условия вида (7.4) являются обыкновенными начальными условиями. Отсюда, в 
частности, вытекает, что линейное дифференциальное уравнение не имеет 

особых решений. Поэтому общее решение линейного дифференциального 
уравнения (7.2) должно содержать все решения, соответствующие любым 

начальным условиям вида (7.4). Кроме того, всякое решение линейного 
дифференциального уравнения (7.2) определено на промежутке E, где 
непрерывны )(...,),(),( 21 xaxaxa

n
 и  )(xb . 

ОПРЕДЕЛЕНИЕ 7.2. Если 0)( ≡/xb , то дифференциальное уравнение (7.2) 

называется линейным неоднородным уравнением. Если же 0)( ≡xb , т.е. 

уравнение вида 

                   0)(')(...)( 1
)1(

1
)(

=++++ −
−

yxayxayxay nn
nn ,         

 

называется  линейным однородным уравнением n-го порядка. 
Рассмотрим некоторые примеры: 

1) 
x

eyxy
cos

'sin2 =⋅+ʹ́ʹ  – неоднородное линейное уравнение 3-го порядка; 

2) 0sin'' =− yy  – не является линейным, так как в это уравнение искомая 
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функция y входит нелинейно. 
В дальнейшем ради краткости мы ограничимся лишь случаем линейных 

уравнений 2-го порядка. Полученные в этом случае результаты легко могут быть 
распространены и на линейные уравнения более высоких порядков.  

 

7.2. Линейные однородные дифференциальные уравнения 2-го 
порядка. Построение общего решения. Согласно сказанному в предыдущем 

пункте, линейным однородным дифференциальным уравнением 2-го порядка 

называется уравнение вида 
                                      0)(')('' =++ yxqyxpy ,                                            (7.5) 

 

где )(xyy =  – искомая функция, а p(x) и q(x) – заданные функции от x, которые 

будем считать непрерывными на некотором промежутке E = (a, b). 

Отметим сначала некоторые основные свойства решений линейного 
однородного уравнения (7.5). 

Теорема 7.1. Если функция )(1 xy ϕ=  является решением линейного 

однородного уравнения (7.5), то функция )(1 xCy ϕ= , где C – произвольная 

постоянная, также является решением этого уравнения. 

Теорема 7.2. Если функции )(11 xy ϕ=  и )(22 xy ϕ=  являются решениями 

линейного однородного уравнения (7.5), то функция )()( 213 xxy ϕϕ +=  также 

является решением этого уравнения. 

Из теорем 7.1 и 7.2 вытекает такое 
Следствие 7.1. Если функции )(11 xy ϕ=  и )(22 xy ϕ=  являются решениями 

однородного уравнения (7.5), то всякая функция вида )()( 2211 xCxCy ϕϕ +=  также 

является решением этого уравнения, каковы бы ни были числа С1 и С2. 

Рассмотрим теперь вопрос о нахождении общего решения линейного 
однородного уравнения 2-го порядка вида (7.5). 

Из следствия 7.1 видно, что если )(1 xϕ  и )(2 xϕ  – какие-либо частные 

решения уравнения (7.5), то и функция вида 
 

                                        )()( 2211 xCxCy ϕϕ += ,                                            (7.6) 
 

где С1, С2 – произвольные постоянные, также является решением этого 
уравнения. 

Естественно ожидать, что семейство функций вида (7.6), зависящее от двух 
произвольных постоянных С1 и С2, и будет общим решением 

дифференциального уравнения 2-го порядка (7.5). Однако это не всегда так. 
Например, уравнению 

                                                 065 =+ʹ−ʹ́ yyy                                                 (7.7) 
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удовлетворяют функции 
x

ey
2

1
=  и 

x
ey

2

2
5= , являющиеся его частными 

решениями. Однако семейство функций 
xx

eCeCy
2

2

2

1
5+= , где С1, С2 – 

произвольные постоянные, не является его общим решением, так как оно задает 

не все решения уравнения (7.7). В самом деле, например, решение вида x
ey

3

3
=  

не получается из семейства функций 
xx

eCeCy
2

2

2

1
5+=  ни при каких значениях 

произвольных постоянных С1 и С2. 

В связи со сказанным выше возникает естественный вопрос: каким 

условиям должны удовлетворять два частных решения )(11 xy ϕ=  и )(22 xy ϕ=  

уравнения (7.5), чтобы из них (по формуле (7.6)) можно было построить общее 
решение этого уравнения?  Для ответа на этот вопрос нам понадобится понятие 
фундаментальной системы частных решений линейного однородного 
дифференциального уравнения (7.5). 

ОПРЕДЕЛЕНИЕ 7.3.  Пару частных решений )(11 xy ϕ=  и )(22 xy ϕ=  

линейного однородного уравнения (7.5) называют фундаментальной системой 
решений на промежутке E, если ни в одной точке этого промежутка 
определитель 

                                            ( )
21

21

21,
yy

yy
yy

ʹʹ
=Δ                                              (7.8) 

не обращается в нуль. 
Обычно определитель (7.8) называют определителем Вронского13

 или 

вронскианом системы функций y1 и y2. 

Пример 7.1. Показать, что система функций 
x

ey
2

1
=  и 

x
ey

3

2
=  образует 

фундаментальную систему решений дифференциального уравнения (7.7) на 
промежутке ),( ∞+−∞ . 

РЕШЕНИЕ. Во-первых, заметим, что обе функции 
x

ey
2

1
=  и 

x
ey

3

2
=  

являются частными решениями уравнения (7.7) на промежутке ),( ∞+−∞ . Во-

вторых, вронскиан этой системы функций 

( ) 0
32

,
5

32

32
32

≠==Δ
x

xx

xx

xx
e

ee

ee
ee  при всех  x∈ ),( ∞+−∞ . 

Следовательно, данная система является фундаментальной системой 
решений дифференциального уравнения (7.7) на промежутке ),( ∞+−∞ . 

Важно отметить, что понятие фундаментальной системы решений 

уравнения (7.5) тесно связано с понятием линейной зависимости системы 

                                                
13

 Юзеф Вронский (1778-1853) – польский математик. 
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функций14
. А именно, справедлива 

Теорема 7.3. Пара решений )(11 xy ϕ=  и )(22 xy ϕ=  уравнения (7.5) на E 

образует на этом промежутке фундаментальную систему частных решений 

этого уравнения тогда и только тогда, когда эти функции линейно независимы 

на E. 

Доказательство. Пусть функции )(11 xy ϕ=  и )(22 xy ϕ=  – линейно 

независимые решения уравнения (7.5) на промежутке E. Докажем, что вронскиан 

этих функций не обращается в нуль ни в одной точке x из E. 

Будем рассуждать методом от противного. Допустим, что в какой-либо 

точке x0∈E определитель Вронского для этих функций равен нулю, т.е. 
 

( ) .0
)()(

)()(
,

0201

0201
21 0

=
ʹʹ

=Δ =
xx

xx
yy xx

ϕϕ

ϕϕ
 

Составим систему уравнений 
 

                                          
⎩
⎨
⎧

=ʹ+ʹ

=+

,0)()(

0)()(

022011

022011

xx

xx

ϕαϕα

ϕαϕα
                                     (7.9) 

 

в которой α1 и α2 – неизвестные числа. Это однородная система двух линейных 

алгебраических уравнений с двумя неизвестными α1 и α2. Так как определитель 

этой системы ( ) 0,
021 =Δ =xxyy , то, как известно из курса линейной алгебры, она 

имеет ненулевое решение, т.е. существует пара чисел α1 и α2 таких, что хотя бы 

одно из них отлично от нуля и они удовлетворяют системе (7.9). Для найденных 

значений α1 и α2 составим функцию 

).()()( 2211 xxxU ϕαϕα +=  
 

В силу следствия 7.1 данная функция есть решение уравнения (7.5), а в силу (7.9), 

оно удовлетворяет следующим начальным условиям: 
 

                                               0)( 0 =xU  и 0)(' 0 =xU .                                       (7.10) 
 

С другой стороны, очевидно, что функция, тождественно равная нулю (т.е.  
0)( ≡xV ), также является решением уравнения (7.5) и удовлетворяет начальным 

условиям (7.10). Но тогда в силу теоремы Коши для линейных уравнений эти два 
решения должны тождественно равняться друг другу, т.е.  
 

                                      0)()( 2211 ≡+ xx ϕαϕα   на E.                                    (7.11) 

                                                
14 Напомним, что две функции )(

1
xϕ , )(

2
xϕ , определенные на промежутке E, называются линейно 

зависимыми на этом промежутке E, если существуют такие постоянные α1 и α2, из которых хотя бы одна отлична 

от нуля, что на E имеет место тождество: 0)()(
2211

≡+ xx ϕαϕα . Если же это тождество имеет место только при   

0
21
== αα  то функции )(

1
xϕ  и )(

2
xϕ  называются линейно независимыми на E. 
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Но последнее тождество означает, что функции )(1 xϕ  и )(2 xϕ  линейно зависимы 

на промежутке Е. А это противоречит условию теоремы. 

Обратно, пусть какая-нибудь пара решений )(11 xy ϕ=  и )(22 xy ϕ=  

уравнения (7.5) образует на E фундаментальную систему решений. Покажем, что 
система функций )(11 xy ϕ=  и )(22 xy ϕ=  будет линейно независимой на E. 

Предположим противное, т.е. пусть система функций )(11 xy ϕ=  и 

)(22 xy ϕ=  линейно зависима на E. Тогда найдутся числа α1 и α2 такие, что хотя 

бы одно из них отлично от нуля, и для которых выполняется тождество (7.11). 

Отсюда следует, что однородная система алгебраических уравнений вида (7.9) 

имеет ненулевое решение. Но последнее возможно лишь в случае, когда 
основной определитель системы уравнений (7.9) равен нулю, т.е. 

( ) .0,
021 =Δ =xxyy  А это противоречит тому, что данная система решений образует 

на E фундаментальную систему решений уравнения (7.5). Полученное 
противоречие завершает доказательство теоремы.► 

Замечание 7.1. Из доказательства теоремы 7.3 видно, что если вронскиан 

для пары решений )(1 xϕ  и )(2 xϕ  уравнения (7.5) равен нулю хотя бы в одной 

точке промежутка E, то он тождественно равен нулю на E.  

Отметим, что в силу теоремы 7.3 определение фундаментальной системы 

решений дифференциального уравнения (7.5) можно давать и в такой форме. 
ОПРЕДЕЛЕНИЕ 7.4. Любая пара )(1 xϕ , )(2 xϕ  линейно независимых на E 

частных решений уравнения (7.5) называется фундаментальной системой 
решений этого уравнения. 

Возникает естественный вопрос: всякое ли линейное однородное 
дифференциальное уравнение вида (7.5) имеет фундаментальную систему 
частных решений? Ответ на этот вопрос дает следующая 

Теорема 7.4. У каждого линейного однородного дифференциального 

уравнения (7.5) с непрерывными на E коэффициентами p(x) и q(x) существует 

хотя бы одна фундаментальная система частных решений. 

Доказательство. Рассмотрим два частных решения уравнения (7.5): ),(1 xϕ  

удовлетворяющее начальным условиям 1)( 01 =xϕ , 0)(' 01 =xϕ , и )(2 xϕ , 

удовлетворяющее начальным условиям 0)( 02 =xϕ , 1)(' 02 =xϕ , где x0∈E.  Такие 

решения существуют в силу теоремы Коши для уравнения (7.5). Кроме того, эти 

решения )(1 xϕ  и )(2 xϕ  образуют фундаментальную систему решений уравнения 

(7.5). В самом деле, вронскиан этих решений в точке x0∈E отличен от нуля, т.е. 
 

01
10

01

)()(

)()(

0201

0201
≠==

ʹʹ xx

xx

ϕϕ

ϕϕ
. 
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Следовательно, в силу замечания 7.1 вронскиан системы функций )(1 xϕ  и )(2 xϕ  

не равен нулю ни в одной точке из E, т.е. эта система фундаментальна. ► 

Замечание 7.2. Из доказательства теоремы 7.4 видно, что, вообще говоря, 
всякое линейное однородное уравнение имеет не одну, а бесконечное множество 
различных фундаментальных систем решений. 

Обратимся теперь к вопросу о нахождении общего решения линейного 
однородного уравнения (7.5). Оказывается, общее решение уравнения (7.5) 

может быть легко получено, если известна какая-либо фундаментальная система 
частных решений этого уравнения. А именно, справедлива следующая теорема, 
определяющая структуру общего решения уравнения (7.5). 

Теорема 7.5. Если функции )(11 xy ϕ=  и )(22 xy ϕ=  образуют на промежутке 

Е фундаментальную систему частных решений уравнения (7.5), то общее 

решение этого уравнения дается формулой 
 

                                          ),()( 2211 xCxCy ϕϕ +=                                          (7.12) 
 

где С1, С2 – произвольные постоянные. 

Доказательство. В силу определения общего решения для доказательства 
теоремы достаточно показать, что, во-первых, всякая функция вида (7.12) есть 
решение уравнения (7.5); во-вторых, надо убедиться, что семейство функций 

(7.12) является общим решением уравнения (7.5), т.е. оно содержит все частные 
решения данного уравнения.  

Первая часть доказательства вытекает из следствия 7.1. 

Чтобы доказать вторую часть, достаточно установить, что любые 
начальные условия вида 

                                          
/
00

00
', yyyy

xxxx
==

==
,                                     (7.13) 

где ),(0 bax ∈ , +∞<<∞−+∞<<∞−
/
00 , yy , определяют частное решение, 

содержащееся в формуле (7.12), т.е. получающееся из (7.12) при надлежащем 

подборе постоянных С1 и С2. 

Поскольку для семейства функций (7.12) условия (7.13) можно записать в 
виде следующей системы уравнений 

 

                                           
⎩
⎨
⎧

ʹ=ʹ+ʹ

=+

,)()(

)()(

0022011

0022011

yxCxC

yxCxС

ϕϕ

ϕϕ
                                 (7.14) 

 

то для завершения доказательства теоремы достаточно заметить, что (7.14) есть 
неоднородная система двух линейных алгебраических уравнений с двумя 
неизвестными С1 и С2, основной определитель которой равен значению 

вронскиана системы решений )(1 xϕ  и )(2 xϕ  в точке x0. Но в силу 

фундаментальности этой системы решений он отличен от нуля. Следовательно, 
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система уравнений (7.14) имеет и притом единственное решение 0

11
CC =  и 

.
0

22
CC =  А это значит, что именно частное решение вида )()( 2

0
21

0
1 xCxCy ϕϕ +=  

будет удовлетворять начальным условиям (7.13). ► 
 

Пример 7.2. Решить дифференциальное уравнение (7.7). 

РЕШЕНИЕ. Выше уже было установлено, что функции 
x

ey
2

1
=  и 

x
ey

3

2
=  

образуют фундаментальную систему решений уравнения (7.7). Поэтому, 
согласно теореме 7.5, общее решение этого уравнения имеет вид: 

,
3

2
2

1
xx

eCeCy +=  

где 
1

C  и 
2

C - произвольные постоянные. 

Замечание 7.3. Из теоремы 7.5 видно, что для того чтобы найти общее 
решение линейного однородного уравнения вида (7.5), достаточно найти какую-

нибудь фундаментальную систему его частных решений. В связи с этим 

возникает вопрос: как практически найти хотя бы одну фундаментальную 

систему частных решений уравнения (7.5). В общем случае, к сожалению, до сих 
пор не существует такого метода, который позволял бы найти фундаментальную 

систему решений для любого линейного однородного дифференциального 
уравнения вида (7.5). Однако, как будет показано далее, для достаточно широких 
классов линейных однородных уравнений (например, для линейных однородных 
уравнений с постоянными коэффициентами) существуют очень удобные методы 

нахождения фундаментальных систем частных решений. 
 

7.3. Линейные неоднородные дифференциальные уравнения 2-го 
порядка. Структура общего решения. Метод вариации произвольных 
постоянных. В этом пункте будем изучать линейные неоднородные 
дифференциальные уравнения 2-го порядка, т.е. уравнения вида 

 

                                        )()(')('' xfyxqyxpy =++ ,                                      (7.15) 
 

где )(xyy =  – искомая функция, а p(x), q(x) и )(xf  – заданные функции от x, 

непрерывные на некотором промежутке ),( baE = . 

Уравнение вида 
                                          ,0)(')('' =++ yxqyxpy                                        (7.16) 

 

которое получается из (7.15) заменой )(xf  нулем, будем называть линейным 

однородным дифференциальным уравнением, соответствующим 

неоднородному уравнению (7.15). 

Из результатов предыдущего пункта видно, что структура общего решения 
линейного однородного уравнения (7.16) определяется формулой (7.12). 

Выясним теперь структуру общего решения неоднородного уравнения 
(7.15). Справедливо следующее важное утверждение. 
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Теорема 7.6. Пусть дано линейное неоднородное уравнение (7.15). Если 

)(11 xy ϕ=  и )(22 xy ϕ=  - какая-либо фундаментальная система частных решений 

соответствующего однородного уравнения (7.16), а )(xF  - какое-нибудь 

частное решение данного неоднородного уравнения (7.15), то общее решение 

неоднородного уравнения (7.15) дается формулой 
 

                                    ),()()( 2211 xFxCxCy ++= ϕϕ                                      (7.17) 
 

где С1, С2 – произвольные постоянные. 

Другими словами, структура общего решения линейного неоднородного 

уравнения (7.15) такова: .
...... нчооно

yyy +=  

Доказательство.  В том, что всякая функция вида (7.17) будет решением 

уравнения (7.15), легко можно убедиться непосредственной проверкой. 

Покажем далее, что формулой (7.17) задается общее решение уравнения 
(7.15), т.е. путем подбора произвольных постоянных С1 и С2 в (7.17) можно 
удовлетворить любым начальным условиям вида (7.13). 

Действительно, потребовав, чтобы решение вида (7.17) удовлетворяло 
начальным условиям (7.13), приходим к системе линейных алгебраических 
уравнений относительно С1 и С2 : 

                              
⎩
⎨
⎧

−ʹ=ʹ+ʹ

−=+

),(')()(

)()()(

00022011

00022011

xFyxCxC

xFyxCxС

ϕϕ

ϕϕ
                                (7.18) 

 

Так как основной определитель системы (7.18) совпадает с определителем 

Вронского системы функций )(11 xy ϕ=  и )(22 xy ϕ=  в точке 
0

xx =  и, 

следовательно, не равен нулю, то система двух алгебраических уравнений (7.18) 

допускает единственное решение ),( 0
2

0
1 CC . Поэтому частное решение 

)()()( 2
0
21

0
1 xFxCxCy ++= ϕϕ  уравнения (7.15) будет удовлетворять начальным 

условиям (7.13). ► 

Замечание 7.4. Из теоремы 7.6 следует, что задача нахождения общего 
решения линейного неоднородного уравнения (7.15) сводится к отысканию 

какого-либо его частного решения )(xF  и общего решения соответствующего 

однородного уравнения (7.16). 

Поскольку для получения общего решения однородного уравнения (7.16) 

достаточно найти какую-либо фундаментальную систему его частных решений, 

то возникает важный вопрос: можно ли найти хотя бы одно частное решение 
неоднородного уравнения (7.15), если нам известна фундаментальная система 
частных решений соответствующего однородного уравнения (7.16)? 

Ответ на этот вопрос дается следующей теоремой, в самом доказательстве 
которой содержится очень полезный метод отыскания частного решения 
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линейного неоднородного уравнения (7.15) по заданной фундаментальной 

системе частных решений соответствующего однородного уравнения (7.16). 

Этот метод обычно называется методом вариации произвольных постоянных 

или методом Лагранжа
15

. 

Теорема 7.7. Если известна какая-нибудь фундаментальная система 

частных решений однородного уравнения (7.16), то частное решение 

неоднородного уравнения (7.15) может быть найдено с помощью квадратур. 

Доказательство. Пусть )(11 xy ϕ=  и )(22 xy ϕ=  – какая-нибудь 

фундаментальная система частных решений однородного уравнения (7.16). 

Будем искать частное решение неоднородного уравнения (7.15) в виде 
 

                                 ),()()()( 2211 xxCxxCy ϕϕ +=                                         (7.19) 
 

где )(1 xC  и )(2 xC  - пока неизвестные функции от x. 

Ясно, что для нахождения )(1 xC  и )(2 xC  необходимы два независимых 

уравнения, содержащие эти функции. Одно из этих уравнений получится из 
условия, что функция (7.19) удовлетворяет дифференциальному уравнению 

(7.15). Другое уравнение для определения )(1 xC  и )(2 xC , следуя Лагранжу, будем 

задавать в виде: 

                         0)()(')()(' 2211 =+ xxCxxC ϕϕ    для всех ),( bax∈ .             (7.20) 
 

С учетом условия (7.20) для производных функции вида (7.19) будем иметь: 
 

                                 ),()()()(' 2211 xxCxxCy ϕϕ ʹ+ʹ=                                           (7.21) 
 

         ).()()(')()(')('')()('')('' 22112211 xfxxCxxCxxCxxCy =ʹ+ʹ++= ϕϕϕϕ          (7.22) 
 

Наконец, подставляя значения '',', yyy , задаваемые соответственно 

равенствами (7.19), (7.21), (7.22), в левую часть исходного дифференциального 
уравнения (7.15), получим: 

                                 ).()()(')()(' 2211 xfxxCxxC =ʹ+ʹ ϕϕ                                     
 

Таким образом, функция вида (7.19) будет решением неоднородного 
уравнения (7.15), если при всех ),( bax∈  функции )(1 xC  и )(2 xC  будут 

удовлетворять системе16
 

                                 
⎩
⎨
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=ʹ+ʹ

=+

),()()(')()('

0)()(')()('

2211

2211

xfxxCxxC

xxCxxС

ϕϕ

ϕϕ
                               (7.23) 

 

                                                
15

 Жозеф Луи Лагранж (1736-1813) – французский математик. 
16

  В дальнейшем систему (7.23) будем называть системой Лагранжа для уравнения (7.15). 
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Основной определитель системы (7.23) есть вронскиан ),( 21 ϕϕΔ  

фундаментальной системы решений )(11 xy ϕ=  и )(22 xy ϕ=  однородного 

уравнения (7.16) и, следовательно, отличен от нуля на промежутке ),( ba . 

Поэтому из системы (7.23) функции )(),( /

2

/

1 xCxC  определяются однозначно, т.е. 

)()( 1

/

1 xrxC = , )()( 2

/

2 xrxC = , где )(1 xr  и )(2 xr  - вполне определенные функции от x, 

непрерывные на ),( ba . Отсюда сами функции )(1 xC  и )(2 xC  получаются с 

помощью квадратур (интегрирования): 
 

                          111 )()( α+= ∫ dxxrxC ,    222 )()( α+= ∫ dxxrxC ,                           (7.24) 
 

где 0
1
=α  и 0

2
=α  - произвольные постоянные. Но поскольку нам нужно найти 

какое-либо частное решение неоднородного уравнения (7.15), то в (7.24) можно 
считать 0

1
=α  и 0

2
=α . Следовательно, искомое частное решение уравнения 

(7.15) будет иметь вид: ∫∫ ⋅+⋅= dxxrxdxxrxy )()()()( 2211 ϕϕ . Теорема доказана. ► 

Из теорем 7.6 и 7.7 вытекает следующее важное 
Следствие 7.2. Если известна какая-нибудь фундаментальная система 

частных решений однородного уравнения (7.16), то общее решение 

неоднородного уравнения (7.15) может быть найдено с помощью квадратур. 
 

Пример 7.3. Решить дифференциальное уравнение  
 

                                            
x

eyyy
4

65 =+ʹ−ʹ́ .                                           (7.25) 
 

РЕШЕНИЕ. Заметим, что (7.25) – линейное неоднородное уравнение 2-го 

порядка. Как уже было установлено ранее, функции x
ey

2

1
=  и x

ey
3

2
=  образуют 

фундаментальную систему частных решений соответствующего однородного 
уравнения (7.7). Поэтому данное уравнение можно решить методом вариации 

произвольных постоянных. Для этого сначала найдем частное решение 
уравнения (7.25) в виде: 

                                       xx
нч

exCexCy
3

2
2

1.. )()( += ,                                       (7.26) 
 

где )(1 xC  и )(2 xC  - пока неизвестные функции. Далее составим систему Лагранжа 

для уравнения (7.25): 
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Решая эту систему относительно )(),( /

2

/

1 xCxC , получаем: 
x

exC
2/

1 )( −= , 
x

exC =)(/

2 . 

Отсюда с помощью интегрирования находим: 
2

)(
2

1

x
e

xC −=  и 
x

exC =)(2 . 
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Следовательно, согласно формуле (7.26) получим: 
2

4

..

x

нч

e
y = . Тогда по формуле 

(7.17) найдем общее решение данного неоднородного уравнения: 

                                                
2

4

3

2

2

1

x
xx e

eCeCy ++= , 

где С1, С2 – произвольные постоянные. 
 

7.4. Интегрирование линейных дифференциальных уравнений при 

помощи рядов. Из результатов предыдущего пункта видно (см. следствие 7.2), 

что при решении (интегрировании) линейных дифференциальных уравнений 

существенную роль играет фундаментальная система частных решений 
однородного уравнения (7.16). Но как уже было ранее отмечено (см. замечание 
7.3), в общем случае не существует метода, который позволял бы найти 

фундаментальную систему решений для любого линейного однородного 
дифференциального уравнения вида (7.16). Поэтому при интегрировании 

линейных дифференциальных уравнений очень часто используется так 
называемый «метод степенных рядов». Прежде чем изложить суть метода 
степенных рядов, напомним некоторые понятия. 

ОПРЕДЕЛЕНИЕ 7.5. Функция )(xF  называется аналитической 

(голоморфной) в точке 0
x , если она разложима в некоторой окрестности этой 

точки в степенной ряд по степеням )( 0xx − , т.е. 

                       ∑
∞

=

−+=
1

00 )()(
k

k

k
xxaaxF ,  ),( 00 ρρ +−∈ xxx ,                        (7.27) 

где ρ  - некоторое положительное действительное число, а 
!

)( 0
)(

k

xF
a

k

k
= . 

Про функцию )(xF , представимую в виде (7.27), иногда говорят, что она 

допускает в области ρ<−
0

xx  аналитическое представление в виде степенного 

ряда по степеням )( 0xx − . 

Например, функция 
x

xg
−

=
1

1
)(  допускает в области 1<x  аналитическое 

представление в виде степенного ряда по степеням x , так как 
 

                                         ∑
∞

=

+=
− 1

1
1

1

k

k
x

x
,                                                   (7.28) 

 

причем ряд в правой части (7.28) сходится при 1<x . 

Рассмотрим следующую задачу Коши для линейных дифференциальных 
уравнений второго порядка: требуется найти решение )(xy ϕ=  

дифференциального уравнения 
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                                                 ),()(')('' xfyxqyxpy =++                                        (7.29) 
 

удовлетворяющее следующим начальным условиям: 
 

                                                  0000 )(',)( yxyx ʹ== ϕϕ ,                                        (7.30) 
 

где p(x), q(x) и )(xf  – заданные функции от x, голоморфные в некоторой области 

ρ<−
0

xx , а 00 , yy ʹ  - любые заданные действительные числа. 

Справедливо следующее важное утверждение (см., например, [9], с. 166 

или [13], с. 208). 

Теорема 7.7. (Коши). Если функции p(x), q(x) и )(xf  голоморфны в области 

ρ<−
0

xx , то задача Коши (7.29)-(7.30)  имеет единственное решение ),(xy ψ=

, голоморфное в области ρ<−
0

xx , т.е. 

                                  ∑
∞

=

−+−ʹ+=
2

0000 )()()(
k

k
k xxbxxyyxψ ,                             (7.31) 

причем ряд в правой части (7.31) сходится в области ρ<−
0

xx . 

Замечание 7.5. Из теоремы 7.7 видно, что для полного решения задачи 

Коши (7.29)-(7.30) нужно только найти коэффициенты ,...,3,2, =kb
k  в правой 

части (7.31). Но это можно сделать, например, придерживаясь следующего 
правила: 

1) представить функции p(x), q(x), )(xf  и )(''''),(''),( xyxyxy ψψψ ===  

в виде степенных рядов по степеням )( 0xx − : ∑
∞

=

−+=
1

00 )()(
k

k

k xxppxp , 

             ∑
∞

=

−+=
1

00 )()(
k

k

k xxqqxq ,    ∑
∞

=

−+=
1

00 )()(
k

k

k xxaaxf ,  

             ∑
∞

=

−+−+=
2

00

'

00 )()()(
k

k

k xxbxxyyxψ , ∑
∞

=

−−⋅+=
2

1

0

'

0 )()('
k

k

k xxbkyxψ , 

              ∑
∞

=

−−⋅−+=
3

2

02 )()1()(''
k

k

k
xxbkkbxψ ; 

2) подставить в уравнение (7.29) вместо p(x), q(x), )(xf , )(xy ψ= , 

)(''''),('' xyxy ψψ ==  соответствующие им степенные ряды; 

3) приравнять в полученном тождестве коэффициенты при одинаковых 

степенях )( 0xx − , в результате чего придем к алгебраической системе уравнений 

относительно ,...,3,2, =kb
k  которая всегда разрешима. 

4) решив полученную систему алгебраических уравнений, найти значения 

коэффициентов ...,3,2, =kb
k . 

 

Пример 7.4. Решить методом степенных рядов следующую задачу Коши:  
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                                       1)0(',0)0(,0 ===+ʹ́ yyyy .                                    (7.32) 
 

РЕШЕНИЕ. Так как здесь коэффициенты 0)( ≡xp , 1)( ≡xq  и свободный член 

0)( ≡xf  являются постоянными, то они являются голоморфными в области 

),( ∞+−∞ . Следовательно, согласно теореме 7.7 задача Коши (7.32) имеет 

единственное решение )(xy ψ= , голоморфное в области ),( ∞+−∞ , т.е.  

                                                   ∑
∞

=

+=
1

0)(
k

k

k
xbbxψ ,                                            (7.33) 

причем ряд в правой части (7.33) сходится на промежутке ),( ∞+−∞ . 

Дифференцируя, из (7.33) имеем: 
 

     ...)1(...62)('',......2)(' 2

32

1

21 +−+++=++++=
−− n

n

n

n
xbnnxbbxxnbxbbx ψψ .  (7.34) 

 

Подставляя в дифференциальное уравнение (7.32) вместо )(xy ψ=  и 

)('''' xy ψ=  их значения из (7.33) и (7.34), получаем 
 

0}......{}...)1(...62{ 2

3

2

210

2

32 ≡++++++++−+++
− n

n

n

n
xbxbxbxbbxbnnxbb . 

 

Приравнивая в полученном тождестве коэффициенты при одинаковых степенях 
x  (с учетом начальных условий задачи!), будем иметь: 

 

                                            

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎨

⎧

=+⋅+

=+

=+

=+

=

=

+

...

,0)2(

...

,012

,06

,02

,1

,0

2

24

13

02

1

0

nn
bbnn

bb

bb

bb

b

b

                                          (7.35) 

Наконец, решая алгебраическую систему уравнений (7.35), находим значения 

всех коэффициентов ...,2,1,0, =kb
k : 

            ...,
)!12(

)1(
,0...,,0,

!3

1

6

1
,0,1,0 12243210

+

−
====−==== +

k
bbbbbbb

k

kk
 . 

Таким образом, подставляя найденные значения ...,2,1,0, =kb
k , в правую 

часть (7.33), окончательно получаем 

              x
k

xxxx
xx

k

k sin...
)!12(

)1(...
!7!5!3

)(
12753

=+
+

−++−+−=
+

ψ .► 

Замечание 7.6. Важно отметить, что методом степенных рядов очень часто 
удобно находить фундаментальную систему частных решений однородного 
дифференциального уравнения  
                                                 ,0)(')('' =++ yxqyxpy                                           (7.36) 
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коэффициенты которого - голоморфные функции в некоторой области 

ρ<−
0

xx . 

Действительно, для этого достаточно найти методом степенных рядов 
решение )(11 xhy =  задачи Коши 

 

                                   ,0)(')('' =++ yxqyxpy   0)(,1)( 0
'
101 == xhxh ,                        (7.37) 

 

и решение )(22 xhy =  задачи Коши 
 

                                   ,0)(')('' =++ yxqyxpy   1)(,0)( 0
'
202 == xhxh .                        (7.38) 

 

Очевидно, что тогда система функций )(11 xhy = , )(22 xhy =  будет 

фундаментальной системой частных решений уравнения (7.36), 

удовлетворяющей следующим начальным условиям: 
 

                                  0)(,1)( 0
'
101 == xhxh  и 1)(,0)( 0

'
202 == xhxh .                   (7.39) 

 

ОПРЕДЕЛЕНИЕ 7.6. Фундаментальная система )(11 xhy = , )(22 xhy =  

частных решений уравнения (7.36), удовлетворяющая начальным условиям 

(7.39), называется нормированной в точке 
0

x . 
 

Ясно, что если уже найдена нормированная в точке 0
x  фундаментальная 

система )(11 xhy = , )(22 xhy =  частных решений уравнения (7.36), то общее 

решение этого уравнения в области  

                                 }',,)',,{( 0
3

+∞<+∞<<−∈= yyxxyyx ρRD   

можно получить по формуле )()( 2211 xhCxhCy += , где С1, С2 – произвольные 

постоянные. 
Пример 7.5. Решить дифференциальное уравнение  

 

                                                  0'' =−yy .                                                     (7.40) 
 

РЕШЕНИЕ. Поскольку здесь коэффициенты 0)( ≡xp , 1)( −≡xq  являются 

голоморфными в области ),( ∞+−∞ , то сначала построим фундаментальную 

систему )(11 xhy = , )(22 xhy =  частных решений уравнения (7.40), нормированную 

в точке 0
0
=x , т.е. ∑

∞

=

+=
2

1 1)(
k

k

k
xaxh  и ∑

∞

=

+=
2

2 )(
k

k

k
xbxxh . 

Подставляя первую из этих функций в уравнение (7.40), получим 
 

     0)......1()...)1(...62( 2

2

2

32 ≡++++−+−+++
− n

n

n

n
xaxaxannxaa .         (7.41) 

 

Из тождества (7.41) (с учетом начальных условий 0)0(,1)0( 1

'

101 ==== ahah ) 

будем иметь: 
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⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎨

⎧

=−⋅+

=−

=−

=−

=

=

+

...

,0)2(

...

,012

,06

,02

,0

,1

2

24

13

02

1

0

nn
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aa

aa

aa

a

a

                                        (7.42) 

Решая систему (7.42) находим: ...,2,1,0,0,
)!2(

1
122 === + ka

k
a

kk . Следовательно,  

.ch
)!2(

1
1)(

1

2
1 xx

k
xh

k

k
=+= ∑

∞

=

 Совершенно аналогичными рассуждениями находим 

.sh
)!12(

1
)(

2

12
2 xx

k
xxh

k

k
=

−
+= ∑

∞

=

−  Тогда общее решение уравнения (7.40) можно 

задавать в виде xCxCy shch
21

+= ,  где С1, С2 – произвольные постоянные.► 

 

II. КОНТРОЛЬНЫЕ ВОПРОСЫ И ЗАДАНИЯ 
 

1. Каков общий вид линейного дифференциального уравнения 2-го порядка? 

2. Сформулируйте задачу Коши для линейных уравнений 2-го порядка. 
3. Могут ли у линейных уравнений быть особые решения ? Почему ? 

4. На каком множестве определены решения однородного линейного 
дифференциального уравнения 2-го порядка ? 

5. Что называется фундаментальной системой решений линейного однородного 
уравнения 2-го порядка ? 

6. Что называется определителем Вронского системы функций ? 

7. Какая система функций называется линейно независимой (зависимой) на 
промежутке ),( ba ? 

8. Какова структура общего решения однородного линейного 
дифференциального уравнения 2-го порядка ? 

9. Какова структура общего решения неоднородного линейного 
дифференциального уравнения ? 

10. В чём состоит метод вариации произвольных постоянных интегрирования 
неоднородного линейного дифференциального уравнения ? 

11. Дайте определение аналитической (голоморфной) функции в точке. 
12. Сформулируйте теорему Коши для линейных дифференциальных уравнений 

с голоморфными коэффициентами? 

13. В чем суть метода интегрирования линейных дифференциальных уравнений 

при помощи степенных рядов? 
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III. ПРИМЕРЫ И ЗАДАЧИ ДЛЯ АУДИТОРНОЙ РАБОТЫ 
 

7.1. Исходя из определения, докажите, что следующая система функций 

линейно независима на );( ∞+−∞ : xeyxey
xx

3cos;3sin
2

2

2

1 == . 
 

7.2. Исследуйте, являются ли данные три функции линейно зависимыми или 

нет: 2

321
;2; xyxyxy === . 

 

7.3. Покажите, что функции 
⎩
⎨
⎧

≤<

≤≤−
=

10,0

,01,
2

1
x

xx
y  и 

⎩
⎨
⎧

≤<

≤≤−
=

10,

,01,0

22
xx

x
y  линейно 

независимы, а соответствующий определитель Вронского тождественно 
равен нулю. Постройте графики этих функций. 

 

7.4. Составьте линейное дифференциальное уравнение по заданной 

фундаментальной системе решений: 
xx

xee , . 

7.5. Покажите, что система функций 
xx

ee
32

,
−

 является фундаментальной для 

уравнения 06 =−ʹ+ʹ́ yyy , и запишите соответствующее общее решение 

этого уравнения. 
 

7.6. Решите уравнения:  а) 044 =+ʹ+ʹ́ yyy ;       б) xeyyy
x

ln44
2−

=+ʹ+ʹ́ . 
 

7.7. Методом степенных рядов решите задачу Коши: 

        0)0(',1)0(,
1

1
===

−
+ʹ́ yyxy

x
y . 

 

IV. ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ 

7.8. Найдите определитель Вронского для системы функций: x
e

x

1

,
1

. 

7.9. Покажите, что функции  

        

⎪
⎪

⎩

⎪
⎪

⎨

⎧

≤<

≤≤⎟
⎠

⎞
⎜
⎝

⎛
−

=

⎪
⎪

⎩

⎪
⎪

⎨

⎧

≤<⎟
⎠

⎞
⎜
⎝

⎛
−

≤≤

=

,1
2

1
,0

,
2

1
0,

2

1

,1
2

1
,

2

1

,
2

1
0,0

2

221

x

xx

y

xx

x

y   

          линейно независимы, а соответствующий определитель Вронского  
          тождественно равен нулю. Постройте графики этих функций. 
 

7.10. Составьте однородное линейное дифференциальное уравнение, если 

задана его фундаментальная система решений: 
xx

eyey ==
−

21
, . 

 

7.11. Решите уравнения:  а) 02 =+ʹ−ʹ́ yyy ;         б) 
xx

eeyy cos
2

=ʹ−ʹ́ . 
 

7.12. Методом степенных рядов найдите общее решение уравнения .0=+ʹ́ xyy  
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ЗАНЯТИЕ № 8 
 

Тема: Линейные дифференциальные уравнения  2-го порядка с 
постоянными коэффициентами. Метод неопределенных коэффициентов 

 

I. ОСНОВНЫЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ 
 

8.1. Линейные однородные дифференциальные уравнения 2-го 
порядка с постоянными коэффициентами. Из результатов предыдущего 
занятия видно, что если известна какая-нибудь фундаментальная система 
решений )(11 xy ϕ=  и )(22 xy ϕ=  линейного однородного уравнения 2-го порядка, 

то его общее решение задается формулой 
 

                                      )()( 2211 xCxCy ϕϕ += , 
 

где 
1

C  и 
2

C  – произвольные постоянные. Так как не существует общего метода 

отыскания фундаментальной системы частных решений для любого линейного 
однородного уравнения второго порядка, то возникает необходимость 

выявления отдельных классов линейных однородных дифференциальных 
уравнений, для которых задача разыскания фундаментальной системы решений 

легко решается. Одним из таких классов линейных уравнений является класс 
уравнений с постоянными коэффициентами, т.е. уравнений вида 
 

                                                       ,0''' =++ qypyy                                                    (8.1) 
 

где р и q – некоторые действительные числа. 
Разрешив уравнение (8.1) относительно ''y , получим )',,('' yyxfy = , где 

qypyyyxf −−= ')',,( . Заметим, что здесь функция )',,( yyxf  непрерывна вместе со 

своими частными производными по y  и 'y  во всех точках пространства 3
R , т.е. 

для уравнения (8.1) условия теоремы Коши выполняются в 3
R . Отсюда, во-

первых, вытекает, что любые начальные условия вида 
 

00
00

, yyyy
xxxx

ʹ=ʹ=
==

, 
 

где +∞<<∞−
0

x ; +∞<<∞−
0

y ; +∞<ʹ<∞−
0

y , являются обыкновенными, а во-

вторых, решением уравнения (8.1) может быть функция )(xyy = , определенная 

на всей числовой прямой );( ∞+−∞ . Кроме того, как видно из уравнения (8.1), его 

решением должна быть функция, производные которой отличны от нее самой 

лишь на постоянный множитель. Ясно, что среди основных элементарных 

функций такой является показательная функция .
kxey =  

Лемма 8.1. Если число 
0

k  является корнем уравнения 
 

                                                     0
2

=++ qpkk ,                                                   (8.2) 
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то функция xk
ey 0=  будет решением дифференциального уравнения (8.1). 

 

Доказательство. Пусть 
0

k  – корень квадратного уравнения (8.2). Найдем 

производные 1-го и 2-го порядков функции xk
ey 0= :  ., 00 2

00

xkxk
ekyeky =ʹ́=ʹ  

Подставляя значение yy ʹ,  и ''y  в левую часть уравнения (8.1), получаем 
 

0)(

0

0
2
00

2
0

0000 ≡++=++

=

!! "!! #$
qpkkeqeepkek

xkxkxkxk , 

т.е. функция xk
ey 0=  является решением уравнения (8.1). Лемма доказана. ► 

 

Таким образом, в силу леммы 8.1 нахождение частного решения линейного 
однородного дифференциального уравнения с постоянными коэффициентами 

(8.1) сводится к решению алгебраического уравнения (8.2). 
 

ОПРЕДЕЛЕНИЕ 8.1. Уравнение (8.2) называется характеристическим 

уравнением линейного дифференциального уравнения (8.1), а левая часть (8.2), 

т.е. qpkkkQ ++=
2)( , называется характеристическим многочленом уравнения 

(8.1). 

Пример 8.1. Найти корни характеристического уравнения следующего 
дифференциального уравнения 022 =+ʹ−ʹ́ yyy . 

РЕШЕНИЕ. Характеристическое уравнение данного дифференциального 

уравнения имеет вид: 022
2

=+− kk . Далее находим дискриминант полученного 
квадратного уравнения: 4−=D . Так как 0<D , то данное квадратное уравнение 
имеет два комплексно сопряженных корня: ikik −=+= 1,1 21

.► 

Оказывается, если известны корни характеристического уравнения (8.2), 

то очень легко можно построить общее решение дифференциального уравнения 
(8.1). Поскольку (8.2) является квадратным уравнением, то оно, вообще говоря, 
имеет два корня 

1
k  и 

2
k , причем здесь следует различать три случая: 

1) характеристическое уравнение (8.2) имеет два различных 

действительных корня 
1

k  и 
2

k  (в этом случае дискриминант 04
2

>−= qpD  и 

)(
2

1
1 Dpk +−= , )(

2

1
2 Dpk −−= ); 

2) характеристическое уравнение (8.2) имеет два равных действительных 
корня

21
kk = , т.е. один двукратный корень 

1
k  (в этом случае дискриминант 0=D  

и 2/
21

pkk −== ); 

3) характеристическое уравнение (8.2) имеет два сопряженных 

комплексных корня βα ik +=
1

 и βα ik −=
2

 (в этом случае дискриминант 0<D  

и )4(
2

1 2

1 pqipk −+−= , )4(
2

1 2

2 pqipk −−−= ). 
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В каждом из этих случаев ниже будет указан метод построения общего 
решения линейного однородного дифференциального уравнения (8.1). 

Теорема 8.1. Если характеристическое уравнение (8.2) линейного 

дифференциального уравнения (8.1) имеет два различных действительных корня 

1
k  и 

2
k , то общее решение дифференциального уравнения (8.1) можно задавать 

формулой 

                                                   xkxk
eCeCy 21

21
+= ,                                               (8.3) 

 

где 
1

C  и 
2

C  – произвольные постоянные. 

Доказательство. Пусть 
1

k  и 
2

k  – действительные корни 

характеристического уравнения (8.2). Тогда в силу леммы 8.1 функции xk
ey 1

1
=  

и xk
ey 2

2
=  будут частными решениями уравнения (8.1). Эти решения линейно 

независимы на промежутке ( ∞+∞− ; ), так как conste
y

y xkk
≡/=

− )(

1

2 12 . 

Следовательно, функции 
1

y  и 
2

y  образуют фундаментальную систему решений 

уравнения (8.1) и поэтому общее решение уравнения (8.1) можно задавать 
формулой (8.3). Теорема доказана. ► 
 

Пример 8.2. Найти общее решение уравнения 065 =+ʹ+ʹ́ yyy . 

РЕШЕНИЕ. Составим характеристическое уравнение для данного 

дифференциального уравнения: 065
2

=++ kk . Найдем корни этого уравнения: 

2
1

−=k  и 3
2

−=k . Следовательно, в силу теоремы 8.1 общее решение данного 

дифференциального уравнения имеет вид: xx
eCeCy

3

2

2

1

−−
+= , где 

1
C  и 

2
C  – 

произвольные постоянные. ► 
 

Теорема 8.2. Если характеристическое уравнение (8.2) линейного 

дифференциального уравнения (8.1) имеет один двукратный корень 
1

k , то общее 

решение дифференциального уравнения (8.1) можно задавать формулой 
 

                                                 xkxk
xeCeCy 11

21
+= ,                                              (8.4) 

 

где 
1

C  и 
2

C   – произвольные постоянные. 

Доказательство. Пусть 
1

k  – двукратный корень характеристического 

уравнения (8.2) (т.е. 
2

1

p
k −=  или 0

2
1

=+
p

k ). Тогда в силу леммы 8.1 функция 

xk
ey 1

1
=  является частным решением уравнения (8.1). Рассмотрим теперь 

функцию вида xk
xey 1

2
=  и покажем, что она также является частным решением 

дифференциального уравнения (8.1). Для этого найдем 2
y ʹ  и 2

y ʹ́: 
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xkxk
xekey 11

12
+=ʹ , xkxk

xekeky 11
2

112
2 +=ʹ́ . 

 

Подставляя значения 2
y , 2

y ʹ  и 2
y ʹ́ в уравнение (8.1), получаем 

0})
2

(2){()(2

0

1

0

1

2

11

2

11
111111 ≡++++=++++

=
= !"!#$
!! "!! #$

p
kxqpkkeqxexekepxekek

xkxkxkxkxkxk
 

на промежутке );( +∞−∞ . 

Итак, в качестве второго частного решения уравнения (8.1) в данном 

случае можно взять функцию xk
xey 1

2
= . Далее заметим, что полученная пара 

решений xk
ey 1

1
=  и xk

xey 1

2
=  образует фундаментальную систему решений 

уравнения (8.1), так как constx
y

y
≡/=

1

2 . Следовательно, общее решение уравнения 

(8.1) можно задавать в виде (7.4). Теорема доказана. ► 
 

Пример 8.3. Найти общее решение уравнения 02 =+ʹ+ʹ́ yyy . 

РЕШЕНИЕ. Здесь характеристическое уравнение 012
2

=++ kk  имеет один 

двукратный корень 1
1

−=k . Поэтому общее решение данного 

дифференциального уравнения имеет вид: 
xx

xeCeCy
−−

+=
21

, где 
1

C  и 
2

C  – 

произвольные постоянные. ► 

Наконец, остается рассмотреть вопрос о нахождении общего решения 
дифференциального уравнения (8.1) в случае, когда корни характеристического 
уравнения (8.2) являются сопряженными комплексными числами: βα ik +=

1
, 

βα ik −=
2

. 

Сначала установим одно вспомогательное утверждение. 
Лемма 8.2. Если комплекснозначная функция )()()( xivxuxz +=  является 

решением дифференциального уравнения (8.1), то каждая из действительных 

функций )(xu  и )(xv  в отдельности также является решением уравнения (8.1). 

Доказательство. Найдем производные )(xzʹ  и )(xz ʹʹ : )()()( xvixuxz ʹ+ʹ=ʹ , 

)()()( xvixuxz ʹʹ+ʹʹ=ʹʹ . Подставим теперь значения )(xz , )(xzʹ  и )(xz ʹʹ  в уравнение 

(8.1) вместо yy ʹ,  и y ʹ́ соответственно: 

             
[ ] [ ] [ ] [ ]
[ ] ).;(,0)()()(

)()()()()()()()()(

+∞−∞∈≡+ʹ+ʹ́+

++ʹ+ʹ́=++
ʹ

++
ʺ

+

xxqvxvpxvi

xquxupxuxivxuqxivxupxivxu
 

 

Так как комплексное число равно нулю тогда и только тогда, когда его 
действительная и мнимая части равны нулю, то из последнего тождества 

получаем: 0≡+ʹ+ʹ́ quupu  и 0≡+ʹ+ʹ́ qvvpv , т.е. )(xu  и )(xv  – решения уравнения 

(7.1). Лемма доказана. ► 
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Наконец, установим формулу для общего решения дифференциального 
уравнения (8.1) с постоянными коэффициентами в случае, когда 
характеристическое уравнение (8.2) имеет два комплексно сопряженных корня. 

Теорема 8.3. Если характеристическое уравнение (8.2) имеет два 

сопряженных комплексных корня βα ik +=
1

 и βα ik −=
2

, где 0≠β , то общее 

решение дифференциального уравнения (7.1) можно задавать формулой 
 

                                                                                  (8.5) 
 

где 
1

C  и 
2

C   – произвольные постоянные. 

Доказательство. Пусть дискриминант характеристического уравнения 

(8.2)  и оно имеет комплексные сопряженные корни  и 

. Тогда в силу леммы 8.1 функции  и  являются 

решением уравнения (8.1). Отсюда (в силу формул Эйлера17
) имеем: 

 

 

 

Тогда согласно лемме 8.2 получаем, что функции  и  

также являются частными решениями уравнения (8.1). Так как , 

то функции  и  линейно независимы, т.е.  и  образуют фундаментальную 

систему решений дифференциального уравнения (8.1). Следовательно, общее 
решение уравнения (8.1) можно задавать формулой (8.5). Теорема доказана. ► 

Пример 8.4. Найти общее решение уравнения . 

РЕШЕНИЕ. Характеристическое уравнение здесь имеет вид ,022
2

=+− kk  

и оно имеет комплексно сопряженные корни ik +=1
1

 и ik −=1
2

 , т.е. 1=α  и 

.1=β  Поэтому согласно теореме 8.3 получаем, что общее решение данного 

дифференциального уравнения имеет вид: 
 

, 
 

где С1 и С2 – произвольные постоянные. ► 
 

8.2. Линейные неоднородные дифференциальные уравнения 2-го 
порядка с постоянными коэффициентами. Метод вариации произвольных 
постоянных. Рассмотрим линейное неоднородное дифференциальное 
уравнение 2-го порядка с постоянными коэффициентами 

 

                                        ),(''' xfqypyy =++                                                   (8.6) 

                                                
17

 Здесь речь идет о формулах Эйлера  вида: .sincos,sincos titetite
itit

−=+=
−

 . 

),sincos( xCxCey
x ββα

21
+=

04
2

<−= qpD βα ik +=
1

βα ik −=
2

xi
ez

)( βα+
=

1

xi
ez

)( βα−
=

2

.sincos

,sincos

xiexez

xiexez

xx

xx

ββ

ββ

αα

αα

−=

+=

2

1

xey
x βα

cos=
1

xey
x βα

sin=
2

constxtg
y

y
≡/= β

1

2

1
y

2
y

1
y

2
y

022 =+ʹ−ʹ́ yyy

)sincos( xCxCey
x

21
+=
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где p, q – некоторые постоянные числа, а f (x) – заданная функция переменного 
x, непрерывная на некотором промежутке (a, b). 

Из результатов предыдущего занятия мы знаем, что структура общего 
решения неоднородного дифференциального уравнения (7.6) такова: 

 

                                                                                          (8.7) 
  

где . – общее решение соответствующего однородного уравнения (8.1), а 

 какое-либо частное решение неоднородного уравнения (8.6). В силу 

формулы (8.7) метод отыскания общего решения линейного неоднородного 
уравнения (8.6) сводится к следующим двум задачам: 

1) найти какую-либо фундаментальную систему частных решений ( )(1 xϕ  

и )(2 xϕ ) соответствующего линейного однородного уравнения (8.1) (тогда 

, где С1, С2 – произвольные постоянные); 

2) найти хотя бы одно частное решение данного неоднородного уравнения 
(8.6). 

Первая из этих задач решается методом, указанным в предыдущем пункте. 
Вторая задача может быть решена, например, методом вариации произвольных 

постоянных. 

Проиллюстрируем этот метод на следующем конкретном примере. 
Пример 8.5. Найти общее решение дифференциального уравнения 

 

                                                .                                                (8.8) 
 

РЕШЕНИЕ. Характеристическое уравнение здесь имеет вид: 02
2

=−k . 

Корнями характеристического уравнения являются числа  и . 

Следовательно, . 

Теперь, чтобы найти yч.н., воспользуемся методом вариации произвольных 
постоянных, т.е. yч.н. будем искать в виде 

 

 
 

где C1(x) и C2(x) – пока неизвестные функции.  

Для отыскания функций C1(x) и C2(x) составим систему Лагранжа 
 

                                                            (8.9) 

 

Решая последнюю систему относительно , будем иметь 
 

,...... чоооно
yyy +=

..оо
y

−
..чо

y

)()( 2211.. xCxCy
оо

ϕϕ +=

2
2

42
x

exyy =−ʹ́

2
1

−=k 2
2
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xx
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eCeCy
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2

2
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−
+=

,)()( 2
2
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xx
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exCexCy
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                                     ,    . 
 

Отсюда, с помощью интегрирования, получим 
 

 

 

 

 

. 

 

Далее, интегрируя по частям, находим: 
 

      , 

 

 

Следовательно,  

, 

 

. 

 

Таким образом, одним из частных решений неоднородного уравнения (8.8) 

является функция . Тогда согласно формуле (8.7) его общее решение 

можно задавать в виде 

                                    
2

2

2

2

1

xxx
eeCeCy ++=

− , 
 

где С1 и С2 – произвольные постоянные. ► 

Замечание 8.1. Как видно даже из приведенного простого примера, метод 
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вариации произвольных постоянных мало удобен на практике, так как приводит 
в большинстве случаев к громоздким выкладкам и сложным интегрированиям 

(квадратурам). Поэтому возникает вопрос: как найти какое-либо частное 
решение данного линейного неоднородного дифференциального уравнения, не 
прибегая к методу вариации произвольных постоянных? 

Далее будет показано, что если правая часть уравнения (8.6) имеет вид 
 

                                    ,                                     (8.10) 
 

где A(x), B(x) – некоторые многочлены, то можно найти частные решения 
уравнения (7.6), не прибегая к методу вариации произвольных постоянных, а 
применив так называемый метод неопределенных коэффициентов, суть 
которого состоит в выполнении некоторых алгебраических выкладок. 
 

8.3. Решение некоторых классов линейных неоднородных 
дифференциальных уравнений 2-го порядка с постоянными 

коэффициентами методом  неопределенных коэффициентов. 

8.3.1. Рассмотрим линейное дифференциальное уравнение вида 
 

                                       ,                                          (8.11) 
 

где p, q и   – некоторые числа, а  – заданный 

многочлен m-й степени. 

Будем искать частное решение уравнения (8.11) в виде 
 

                                                ,                                                   (8.12) 
 

где )(xQ  - пока произвольный многочлен.  

Далее найдем производные первого и второго порядков функции (8.12): 
 

    ,    . 
 

Наконец, подставив в левую часть уравнения (8.11) вместо '',', yyy   

значения , получим 
 

            . 
 

Разделив обе части последнего равенства на x
e
α , будем иметь 

 

                              ,                         (8.13) 

 

где  - характеристический многочлен уравнения (8.11). 

Таким образом, как видно из равенства (8.13), для того чтобы функция вида 
(8.12) была решением дифференциального уравнения (8.11), необходимо и 
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=
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достаточно, чтобы многочлен  обращал равенство (8.13) в тождество на 

промежутке . 

Выясним теперь, возможно ли это, и если да, то при каком многочлене 

)(xQ ?  Для ответа на этот вопрос нужно рассмотреть следующие три случая:  

1) число α  не является корнем характеристического многочлена, т.е. 

0)( ≠αλ ;  

2) число α  является простым корнем характеристического многочлена, т.е. 

0)( =αλ  но 0)(' ≠αλ ;  

3) число α  является двукратным корнем характеристического многочлена, 
т.е. 0)( =αλ , 0)(' =αλ   , но 0)('' ≠αλ . 

В первом случае, чтобы равенство (8.13) обращалось в тождество, очевидно, 
что в качестве )(xQ  нужно взять многочлен m-й степени, т.е. 

 

                                   ,                            (8.14) 
 

где  - коэффициенты, подлежащие определению. 

Подставляя в левую часть (8.13) вместо )(xQ  многочлен (8.14), получаем 
 

 

 

                                                                                                                                (8.15) 
 

Отсюда, приравнивая коэффициенты при одинаковых степенях переменной x, 

получаем следующую систему m+1 линейных алгебраических уравнений 

относительно m+1 неизвестных : 

 

Из последней системы однозначно определяем коэффициенты  

многочлена  и, следовательно, частное решение уравнения (8.11). 

Таким образом, справедливо следующее утверждение. 
Теорема 8.4. Если число α  не является корнем характеристического 

многочлена , то частное решение уравнения (8.11) следует искать в 

виде 

                                             ,                                                    (8.16) 
 

где  - многочлен степени m. 

Совершенно аналогичными рассуждениями устанавливаются следующие 
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два утверждения. 
Теорема 8.5. Если число α  является простым корнем 

характеристического многочлена , то частное решение уравнения 

(8.11) следует искать в виде 

                                                ,                                               (8.17) 
 

где  - многочлен степени m. 
 

Теорема 8.6. Если число α  является двукратным корнем 

характеристического многочлена , то частное решение уравнения 

(8.11) следует искать в виде 

                                                 ,                                            (8.18) 
 

где  - многочлен степени m. 

Замечание 8.2. Важно отметить, что во всех трех случаях, указанных в 

теоремах 8.4-8.6, для определения коэффициентов многочлена  нужно 

подставить значения  и ее производных в левую часть уравнения (8.11) и, 

приравнивая коэффициенты при одинаковых степенях в полученном тождестве, 
найти неизвестные коэффициенты. 

Пример 8.6. Найти частное решение дифференциального уравнения 
 

                                              .                                             (8.19) 
 

РЕШЕНИЕ. В данном случае 1=α  и 2=m , так как . 

Характеристическое уравнение здесь имеет вид: . Это уравнение 
имеет два различных корня:  и . Следовательно, число 1=α  не 

является корнем характеристического многочлена. Поэтому согласно теореме 
8.5 частное решение будем искать в виде 

 

                                          , 
 

где  - коэффициенты, подлежащие определению. 

Далее, подставляя в левую часть уравнения (8.19) вместо '',', yyy  значения 

, после очевидных упрощений, получим 
 

                         .                            (8.20) 
 

Приравнивая в (8.20) коэффициенты при одинаковых степенях переменной 

x, будем иметь 
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Решая последнюю систему уравнений, находим: . 

Следовательно, искомое частное решение имеет вид: .► 

 

8.3.2. Пусть теперь дано линейное дифференциальное уравнение вида 
 

                      ,                         (8.21) 
 

где p, q, α   и β  – некоторые числа, а  и 

 – заданные многочлены, причем здесь m и n – 

фиксированные неотрицательные целые числа. 
Рассмотрим следующий вопрос: в каком виде следует искать частное 

решение дифференциального уравнения (8.21)? 

Прежде чем ответить на этот вопрос, отметим одно утверждение, полезное 
в дальнейшем. 

Лемма 8.3. Пусть )(1 xV  и )(2 xV   - заданные, непрерывные на (a, b) функции. 

Если функция )(1 xy ϕ=  является решением дифференциального уравнения  
 

                                            , 
 

а )(2 xy ψ=  является решением дифференциального уравнения  
 

                                                    , 
 

то функция   будет решением дифференциального уравнения вида  
 

                                                 . 
 

Доказательство. По условию теоремы имеем 
 

                  и  на . 
 

Почленно складывая эти тождества, получаем: 
 

                         на . 

Тем самым, лемма доказана. ► 

Далее покажем, что проблема отыскания частных решений для уравнений 

вида (8.21) легко сводится к уже решенной ранее проблеме отыскания частных 
решений дифференциального уравнения вида (8.11). 

⎪
⎩

⎪
⎨

⎧

=+−

=+−

=

.0232

026

12

CBA

BA

A

4

7
,

2

3
,

2

1
=== CBA

⎟
⎠

⎞
⎜
⎝

⎛
++=

4

7

2

3

2

1 2

0
xxey

x

)sin)(cos)(( xxTxxPeqyypy nm

x ββα
+=+ʹ+ʹ́

01

1

1 ...)( AxAxAxAxP
m

m

m

mm
++++=

−

−

01

1

1 ...)( BxBxBxBxT
n

n

n

nn
++++=

−

−

( )xVqyypy
1

=+ʹ+ʹ́

( )xVqyypy
2

=+ʹ+ʹ́

213
yyy +=

( ) ( )xVxVqyypy
21

+=+ʹ+ʹ́

( )xVqyypy
1111

≡+ʹ+ʹ́ ( )xVqyypy
2222

≡+ʹ+ʹ́ ),( ba

[ ] [ ] [ ] ( ) ( )xVxVyyqyypyy

yyy

21212121

3
/

3

//

3

+≡++
ʹ

++
ʺ

+
!"!#$!"!#$!"!#$

),( ba



93 

 

В самом деле, в силу формул Эйлера  
 

                         и                                   (8.22) 

 

правую часть дифференциального уравнения (8.21) можно переписать так: 
 

              ,                   (8.23) 
 

где , причем здесь r  означает 

},max{ nm . Тогда уравнение (8.21) примет следующий вид: 
 

                             .                               (8.24) 
 

Введем в рассмотрение два вспомогательных дифференциальных уравнения: 
 

                                                                                     (8.25) 

и 

                                        .                                            (8.26) 
 

В силу результатов предыдущего подпункта (см. теоремы 8.4-8.6) частные 
решения уравнений (8.25) и (8.26) следует искать соответственно в виде 

 

                       и    ,                             (8.27) 
 

где s – кратность корня  (или ) характеристического многочлена 

, причем здесь параметр s может принимать лишь два значения: 

либо s = 0, либо s= 1. 

Следовательно, в силу леммы 8.3 частное решение дифференциального 
уравнения (8.24) (или что то же самое (8.21)) следует искать среди функций вида: 

 

                        .                      (8.28) 
 

В свою очередь, вновь применяя формулы Эйлера (8.22), из (8.28) получим 
 

                               ,                                      (8.29) 
 

где . 

Таким образом, получили следующее утверждение. 
Теорема 8.7. Частное решение неоднородного дифференциального 

уравнения вида (8.21) следует искать в виде (8.29), где  - многочлены 

степени },max{ nmr =   с неопределенными коэффициентами, s – кратность 

корня  характеристического многочлена  (причем здесь 
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s=0, если  не является корнем характеристического многочлена). 
 

Пример 8.7. Найти частное решение дифференциального уравнения 
 

                                         .3cos23sin42'3'' xxyyy +=++                                  (8.30) 
 

РЕШЕНИЕ. В данном случае 3,0 == βα   и 0== nm . Характеристическое 

уравнение здесь имеет вид: 023
2

=++ kk . Это уравнение имеет два различных 
корня:  и . Следовательно, число  не является корнем 

характеристического многочлена, т.е. здесь s= 0. Поэтому согласно теореме 8.7 

частное решение будем искать в виде 
 

                                             xBxAy 3sin3cos += ,                                                (8.31) 
 

где A  и B  - некоторые числа, подлежащие определению. 

Дифференцируя (8.31), получим 
 

xBxAy 3cos33sin3' +−= ,  xBxAy 3sin93cos9 −−= . 
 

Подставляя в левую часть уравнения (8.30) найденные выражения для 
'',', yyy , будем иметь тождество 

 

               xxxBAxBA 3cos23sin43cos)97(3sin)79( +=+−+−− .  
 

Отсюда, в свою очередь, имеем 
 

                                                  
⎩
⎨
⎧

=+−

=−−

.297

479

BA

BA
 

Решая последнюю систему, находим: 
13

1
,

13

5
−=−= BA . Следовательно, 

искомое частное решение имеет вид: .3sin
13

1
3cos

13

5
xxy −−= ► 

 

8.4. Применения линейных дифференциальных уравнений 2-го 
порядка при изучении колебательных явлений. 

8.4.1. Задача о свободных колебаниях в среде без сопротивления. Пусть 
груз массы m  подвешен на пружине, которая неподвижно закреплена одним 

концом (см. рис 8.1). В положении равновесия вес груза mgp =  

уравновешивается упругой силой пружины, которая по закону Гука 
пропорциональна длине отрезка s , на который растянулась пружина под 

действием веса груза, т. е. 

                                                    skmg 2
= ,                                                        (8.32) 

где 2
k  - коэффициент жесткости пружины. 

βα i+

2
1

−=k 1
2

−=k ii 3=+ βα
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Если выведем груз из положения равновесия, сообщив ему перемещение 

0
y  в вертикальном направлении, и затем отпустим его, то он начнет колебаться 

около положения равновесия, совершая так называемые свободные колебания. 

Рассмотрим такую задачу. Требуется найти уравнение колебания 
(движения) данного груза около точки равновесия, пренебрегая массой пружины 

и сопротивлением воздуха. 

РЕШЕНИЕ. Направим ось  вниз по вертикальной прямой, проходящей 

через точку подвеса груза, которую примем за начало координат (см. рис.8.1). 

Составим уравнение движения данного груза, опираясь на второй закон 

Ньютона: 

                                                                maF = ,                                                   (8.33) 

 

где m  - масса груза, a  - ускорение 
движения, F   - результирующая всех сил, 
приложенных к грузу. 

Обозначим через )(tyy =  

отклонение груза от положения 
равновесия в момент времени . Тогда в 
момент времени  на груз будет 
действовать две силы: сила тяжести mg , 

тянущая груз вниз, и упругая сила 

пружины, равная  и 

направленная вверх. Следовательно, 

результирующая сила будет равна , или (в силу (8.32) и (8.33)) 

                                                            .                                                (8.34) 

Учитывая, что ускорение прямолинейного движения равно второй 

производной от пройденного пути по времени, т. е. )('' tya =  , из (8.34) вытекает 

равенство  или 

                                                         ,                                                 (8.35) 

где 0

2

2
>=

m

k
ω . Это и есть дифференциальное уравнение движения данного 

груза около точки равновесия. Оно является линейным однородным 

дифференциальным уравнением 2-го порядка с постоянными коэффициентами. 

OY

t

t

)(2 ysk +

)(2 yskmgF +−=

ykma 2
−=

ykmy 2
'' −=

0''
2
=+ yy ω

 

 

 

 

 

 

                   Рис. 8.1 
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Так как здесь корнями характеристического уравнения 0
22
=+ωk   

являются ωik =
1

 и ωik −=
2

, то общее решение уравнения (8.35) имеет вид: 
 

                                              ,                                      (8.36) 

где  - произвольные постоянные. 

Для выяснения физического смысла полученного решения преобразуем 

его так: 

, 

где , , . 

Итак, решение (7.36) можно записать в виде 

                                                 )sin( ϕω += tAy ,                                                (8.37) 

где ϕ,A  - новые произвольные постоянные. Обычно величина A  называется 

амплитудой колебания, аргумент ϕω +t  - фазой колебания, ϕ  - начальной 

фазой (при 0=t ), ω  - частотой колебания. 

8.4.2. Задача о вынужденных колебаниях в среде без сопротивления. 

Пусть на груз кроме силы тяжести и упругой силы пружины, действует еще 
какая-нибудь внешняя сила, влияющая на характер движения груза. Если при 

этом движение груза остается колебательным, то говорят, что груз (тело) 
совершает вынужденные колебания. 

Пусть внешняя (возмущающая) сила tDtf βsin)( = , где D  и β  - некоторые 

постоянные. Тогда результирующая сила tDykF βsin
2
+−=  (здесь сопротивление 

среды не принимаем во внимание). Следовательно, уравнение движения груза в 

этом случае будет иметь вид  tDykmy βsin''
2
+−=  или 

                                                    tByy βω sin''
2
=+ ,                                           (8.38) 

где 
m

D
B = . Таким образом, получили линейное неоднородное дифференциальное 

уравнение 2-го порядка с постоянными коэффициентами. 

Будем искать общее решение дифференциального уравнения (8.38) по 

формуле 
...... нчооно

yyy += . Учитывая, что общее решение соответствующего 

tctcty ωω sincos)( 21 +=

21
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однородного уравнения (8.35) задается в виде )sin(.. ϕω += tAy
оо

, остается найти 

какое-либо частное решение неоднородного уравнения (8.38).  

Далее нужно рассмотреть отдельно два случая: 1) βω ≠ ; 2) βω = . 

Случай 1. Пусть βω ≠  (частота внешней силы не совпадает с частотой 

собственных колебаний). Согласно теореме 8.7 частное решение неоднородного 
уравнения (8.38) будем искать в виде 

                                               tNtMz ββ sincos += , 

где M  и N  — пока неизвестные коэффициенты, подлежащие определению.  

Для нахождения значений M  и N  найдем производные 

                tNtMz ββββ cossin' +−= ,     tNtMz ββββ sincos''
22 −−= . 

Подставляя найденные выражения для z  и ''z  в (8.38) вместо y  и ''y , получим 

            tBtNtMtNtM ββωβωββββ sinsincossincos
2222

=++−− . 

Отсюда получаем следующую систему алгебраических уравнений: 

                                                  
⎪⎩

⎪
⎨
⎧

=−

=+

.)(

0)(

22

22

BN

M

βω

βω
  

Решая последнюю систему относительно M  и N , будем иметь: ,0=M  

.
22 βω −

=
B

N Следовательно, частное решение неоднородного уравнения (8.38) 

имеет вид: t
B

z β
βω

sin
22 −

= . Значит, общее решение (8.38) в данном случае 

можно задавать так: 

                                            t
B

tAy β
βω

ϕω sin)sin(
22 −

++= .                              (8.39) 

В правой части формулы (8.39) первое слагаемое определяет собственные 
колебания, обусловленные жесткостью пружины и массой груза, а второе 
слагаемое - вынужденные колебания, вызванные внешней силой. 

Как видно из формулы (8.39), если ω  и β  близки по величине, то амплитуда 

вынужденных колебаний велика. В этом случае тело испытывает при движении 

большие смещения. Это явление используется в радиотехнике и механике. 

Случай 2. Пусть βω =  (т. е. частота внешней силы совпадает с частотой 

собственных колебаний). В этом случае частное решение уравнения (8.38) будем 

искать в виде 
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                                                 )sincos( tNtMtr ββ += , 

где M  и N  — неизвестные пока коэффициенты. Чтобы определить M  и N , 

найдем производные 

                             )cossin(sincos' tNtMttNtMr ββββββ +−++= , 

                             )sincos(cos2sin2'' 22
tNtMttNtMr ββββββββ −−++−= . 

Подставляя найденные выражения для r  и ''r  в (8.38) вместо y  и ''y  (с 

учетом βω = ), получим 

                   
.sin)sincos(

)sincos(cos2sin2

2

22

tBtNtMt

tNtMttNtM

ββββ

ββββββββ

=++

+−−++−
 

Наконец, из последнего тождества будем иметь: 

                                                  
⎩
⎨
⎧

=

=−

.02

2

β

β

N

BM
 

Отсюда находим: .0,
22

=−=−= N
BB

M
ωβ

 Итак, t
Bt

r ω
ω

cos
2

−= . Следовательно, в 

данном случае общее решение уравнения (7.38) имеет вид: 

                                          t
Bt

tAy ω
ω

ϕω cos
2

)sin( −+= .                                     (8.40) 

Из формулы (8.40) видно, что при +∞→t , амплитуда вынужденных 
колебаний может оказаться очень большой, даже если величина B  невелика. Это 
явление резкого возрастания амплитуды колебаний под влиянием даже малых 

возмущающих (внешних) сил называют резонансом. Ясно, что это явление не 
желательно в механических колебаниях, так как приведет к поломке 
сооружений. 

В заключение отметим, что линейные дифференциальные уравнения с 
постоянными коэффициентами находят приложения и во многих других задачах 
механики и физики (см., например, [18]). 

 

II. КОНТРОЛЬНЫЕ ВОПРОСЫ И ЗАДАНИЯ 
 

1. Каков общий вид линейных дифференциальных уравнений 2-го порядка с 
постоянными коэффициентами ? 

2. В какой области выполняются условия теоремы Коши (о существовании и 

единственности решения) для однородных линейных дифференциальных 
уравнений 2-го порядка с постоянными коэффициентами ? 
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3. На каком множестве определены решения однородных линейных 
дифференциальных уравнений с постоянными коэффициентами ? 

4. Как выглядит характеристическое уравнение для дифференциального 
уравнения 0=+ʹ+ʹ́ qyypy , где qp, – фиксированные числа ? 

5. Каков вид общего решения дифференциального уравнения 

0=+ʹ+ʹ́ qyypy  с постоянными коэффициентами, если дискриминант 

qpD 4
2
−=  характеристического уравнения: 

      1) положительное число; 
      2) равен нулю; 

      3) отрицательное число ? 

6. В чем состоит идея метода неопределенных коэффициентов при решении 

неоднородных линейных дифференциальных уравнений с постоянными 

коэффициентами ? 

7. В каких случаях неоднородные линейные дифференциальные уравнения 
удобнее решать методом неопределенных коэффициентов, чем методом 

вариации произвольных постоянных ? 

8. В каком виде можно искать частное решение неоднородного линейного 
дифференциального уравнения с постоянными коэффициентами вида: 

     а) ( )xPeqyypy m

ax=+ʹ+ʹ́ ;                                                                                      (*) 

     б) ( ) ( )[ ]xxQxxPeqyypy nm

ax ββ sincos +=+ʹ+ʹ́  ?                                                (**) 

9. Какова структура общего решения неоднородного линейного 
дифференциального уравнения с постоянными коэффициентами вида (*) 

(вида (**)) ? 

10. Каково дифференциальное уравнение свободных (вынужденных) колебаний 

груза в среде без сопротивления? 

 

III. ПРИМЕРЫ И ЗАДАЧИ ДЛЯ АУДИТОРНОЙ РАБОТЫ  
 

8.1. Составьте линейное однородное дифференциальное уравнение, зная его 

характеристическое уравнение: 023
2

=++ kk . 
 

8.2. Зная корни характеристического уравнения ikik 23,23 21 +=−= , найдите 

общее решение однородного уравнения. 
 

8.3. Найдите частное решение дифференциального уравнения 044 =+ʹ−ʹ́ yyy  

при условии, что ( ) ( ) 10,30 −=ʹ= yy . 
 

8.4. Найдите интегральную кривую дифференциального уравнения 
034 =+ʹ−ʹ́ yyy , проходящую через точку M(0, 2) и имеющую в этой точке 

касательную 2+= xy . 
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8.5. Составьте общее решение неоднородного уравнения вида 

( )xfyyy =+ʹ−ʹ́ 565 , для чего предварительно найдите его частное 

решение либо подбором, либо методом вариации произвольных 
постоянных, если 

                    1) ( )
x

exf 5

3

5= ;                   2) ( ) xxf
5

4
sin= . 

 

8.6. Решите дифференциальное уравнение  xeyyy
x

2sin52 =+ʹ−ʹ́ . 
 

8.7. Определите вид частного решения неоднородного линейного 
дифференциального уравнения, если известны корни его 

характеристического уравнения ik 2
1
= , ik 2

2
−=  и правая часть 

( ) xBxAxf 2cos2sin += , где constBconstA == , . 
 

8.8. Найдите частное решение дифференциального уравнения 

xeyyy
x

cos422 =+ʹ−ʹ́ , удовлетворяющее начальным условиям: ( ) πππ ey = , 

( ) ππ ey =ʹ . 
 

8.9. Увеличение длины пружины, пропорционально растягивающей пружину 
силе, и эта сила должна быть равна 1 кг, чтобы длина пружины  

увеличивалась  на 1 см.  К пружине  подвешен  груз  весом 2 кг.  Найдите 
период  колебательного  движения, которое начнёт совершать этот груз, 
если его слегка оттянуть книзу и затем отпустить. 

 

IV. ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ 
 

8.10. Решите дифференциальное уравнение  02 =−ʹ+ʹ́ yyy . 
 

8.11. Найдите частное решение дифференциального уравнения 04 =ʹ+ʹ́ yy , 

удовлетворяющее начальным условиям: ( ) 70 =y , ( ) 80 =ʹy . 
 

8.12. Составьте общее решение неоднородного линейного дифференциального 
уравнения вида ( )xfyyy =+ʹ−ʹ́ 565 , для чего предварительно найдите 

его частное решение либо подбором, либо методом вариации 

произвольных постоянных, если 

1) ( ) 22
32 +−+= xxexf x

;               2)  ( ) xexf
x

cos5

3

= . 
 

8.13. Решите дифференциальное уравнение   xeyyy
x

cos32
−

=+ʹ−ʹ́ . 
 

8.14. Составьте линейное однородное дифференциальное уравнение, зная его 

характеристическое уравнение: 023
2

=−− kk . 
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Раздел 2 
 

Системы обыкновенных дифференциальных уравнений 

 
 

ЗАНЯТИЕ № 9 
 

Тема: Нормальная система дифференциальных уравнений. Сведение 
уравнения n-го  порядка к нормальной системе 

 

I. ОСНОВНЫЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ 
 

9.1. Понятие о нормальной системе дифференциальных уравнений и 

ее решении. Задача Коши для нормальных систем уравнений. Многие задачи 

физики и других областей естествознания приводятся к различным системам 

дифференциальных уравнений. 

ОПРЕДЕЛЕНИЕ 9.1. Система уравнений вида 
 

                               

 

где  - искомые функции от независимой переменной x, называется 

системой n обыкновенных дифференциальных уравнений 1-го порядка 

относительно функций . Здесь  - заданные функции своих 

аргументов. 
В теории дифференциальных уравнений особо важную роль играют так 

называемые нормальные системы. 

ОПРЕДЕЛЕНИЕ 9.2. Система дифференциальных уравнений 1-го порядка 
 

                                                                                (9.1) 

 

разрешенных относительно производных искомых функций, называется 
нормальной системой n обыкновенных дифференциальных уравнений 1-го 

порядка относительно функций . 
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ОПРЕДЕЛЕНИЕ 9.3. Решением нормальной системы (9.1) на некотором 

числовом промежутке  называется всякая совокупность n функций  
 

                                                                 (9.2) 
 

дифференцируемых на промежутке , и обращающая уравнения системы 

(8.1) в тождества на этом промежутке, т.е. 
 

   . 
 

Например, нетрудно проверить, что совокупность из двух функций вида 

,  является решением следующей 

нормальной системы дифференциальных уравнений 
 

                                                                                           (9.3) 

 

на всей числовой прямой ),( ∞+−∞=R . 
 

ОПРЕДЕЛЕНИЕ 9.4. Задачей Коши для системы (9.1) называется задача, 
состоящая в отыскании решений этой системы, удовлетворяющих начальным 

условиям вида: 

                       ,                              (9.4) 

 

где  - заданные числа. Обычно предполагается, что точка 

, где  (здесь  означает область определения 

функции ). 

Справедливо следующее важное утверждение (см., также, например, [21], 

с. 265). 

Теорема Коши. Пусть в нормальной системе дифференциальных 

уравнений (8.1) функции  непрерывны вместе со 

своими частными производными первого порядка по переменным  в 

некоторой области R
n+1

. Тогда для любой фиксированной точки 

 найдется интервал , на котором 

существует единственное решение нормальной системы (9.1), 

удовлетворяющее начальным условиям вида (9.4). 
 

Дадим геометрическую интерпретацию задачи Коши и теоремы Коши для 
нормальной системы уравнений. Для наглядности ограничимся рассмотрением 

нормальной системы из двух уравнений 
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                                                                                         (9.5) 

Введем трехмерную прямоугольную систему координат OXY1Y2 (см. рис. 

9.1). Рассмотрим фиксированную точку . Тогда 

решение 

                                                              
 

системы дифференциальных 
уравнений (9.5), принимающее 

при  значения  и , 

определяет в пространстве R
3
  

некоторую линию L, 

проходящую через точку 

 (см. рис. 9.1). Эта 

линия называется интегральной 
кривой нормальной системы 

(9.5). Следовательно, задача 
Коши для системы уравнений 

(8.5) получает следующую 

геометрическую трактовку:  

в трехмерном пространстве переменных  найти интегральные кривые, 

проходящие через заданную точку .  

Теорема Коши указывает достаточные условия, при которых для 
нормальной системы уравнений будет существовать единственная интегральная 

кривая L, проходящая через . 

При изучении систем дифференциальных уравнений важную роль играет 
понятие общего решения. 

Пусть G  - область, в которой выполняются условия теоремы Коши для 
системы (9.1). 

ОПРЕДЕЛЕНИЕ 9.5. Совокупность n функций 
 

                                                            (9.6) 
 

зависящих от x и от n произвольных постоянных , называется общим 

решением  нормальной системы (9.1) в области G, если выполняются следующие 
два условия: 
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1) при любых допустимых значениях произвольных постоянных 

 совокупность функций (9.6) обращает уравнения системы (9.1) в 

тождества на некотором числовом промежутке ; 

2) в области G совокупность функций (9.6) решает любую задачу Коши для 

системы (9.1), т.е. для любой фиксированной точки  можно 

подобрать такие значения произвольных постоянных , что функции 

 будут удовлетворять начальным условиям 

вида (9.4). 

ОПРЕДЕЛЕНИЕ 9.6. Решения вида:  

получающиеся из общего решения системы (9.1) при конкретных значениях 

произвольных постоянных , называются частными решениями этой 

системы. 

9.2. Сведение дифференциального уравнения n-го порядка к 

нормальной системе уравнений 1-го порядка. Некоторые методы решения 

систем дифференциальных уравнений. Оказывается, всякое обыкновенное 
дифференциальное уравнение n-го порядка  

 

                                                                            (9.7) 
 

можно привести к некоторой нормальной системе дифференциальных 
уравнений 1-го порядка. 

В самом деле, введя новые функции вида 
 

                        
 

заменим уравнение (9.7) следующей нормальной системой n уравнений: 

                                                                                 (9.8) 

т.е. одно дифференциальное уравнение n-го порядка вида (9.7) эквивалентно 
нормальной системе n дифференциальных уравнений 1-го порядка (9.8). 

Как правило, справедливо и обратное утверждение: всякая нормальная 
система n дифференциальных уравнений 1-го порядка приводится к некоторому 
дифференциальному уравнению n-го порядка (см. также [21], с. 262). На этом 
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основан один из методов решения систем дифференциальных уравнений, а 
именно, так называемый метод исключения. Поясним этот метод на следующем 

конкретном примере. 
Пример 9.1. Решить систему уравнений (9.3). 

РЕШЕНИЕ. Дифференцируя по x, из первого уравнения системы (9.3) 

получим 

dx

dy

dx

dy

dx

yd
21

2

1

2

7 +−= . 

Подставляя в правую часть полученного уравнения вместо 
dx

dy
2

 ее значение 

из второго уравнения системы (9.3), будем иметь 
 

                                              .                                    (9.9) 

 

С другой стороны, из первого уравнения системы (9.3) имеем 
 

                                                      .                                          (9.10) 

 

Наконец, подставив в правую часть уравнения (9.9) вместо 
2

y  

соответствующее выражение, определяемое равенством (9.10), получим 
 

                                         .                                      (9.11) 

 

Таким образом, получили линейное однородное дифференциальное 

уравнение 2-го порядка относительно функции 1
y . 

Общее решение уравнения (9.11) имеет вид 
 

                                                                        (9.12) 
 

где 
1

C  и 
2

C  - произвольные постоянные. Отсюда с помощью дифференцирования 

получаем 

                              .            (9.13) 

 

Далее, подставив в правую часть равенства (9.10) вместо 1
y  и  

соответствующие выражения, определяемые по формулам (9.12) и (9.13), будем 

иметь 

                                .                             (9.14) 
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Таким образом, общее решение системы уравнений (9.3) задается в виде 

семейства функций (9.12) и (9.14), где 
1

C  и 
2

C  - произвольные постоянные. ► 

Другим, часто используемым на практике, методом решения систем 

дифференциальных уравнений является так называемый метод интегрируемых 

комбинаций. Проиллюстрируем суть этого метода на следующем конкретном 

примере. 
Пример 9.2. Решить систему уравнений 

                                                                                                        (9.14) 

РЕШЕНИЕ. Умножив обе части первого уравнения на z, а второго 
уравнения на , получим следующую систему уравнений 

                                                      

Далее, почленно складывая уравнения последней системы, будем иметь 
 

                                                           .                                                (9.15) 
 

Получили так называемую «интегрируемую комбинацию», т.е. 
дифференциальное уравнение, которое легко интегрируется. Интегрируя, из 
(9.15) получим 

                                                     ,                                             (9.16) 
 

где С1 – произвольная постоянная. Отсюда, в свою очередь, находим 

                                                       .                                           (9.17) 

Наконец, подставив найденное по формуле (9.17) выражение для z в первое 
уравнение системы (9.14), получим 

 

                                           .                                (9.18) 

 

Но (9.18) есть уравнение Бернулли. Решая его, будем иметь 

                                         ,                                               (9.19) 

где  - произвольная постоянная. С учетом (9.19) из (9.17) получим 
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                                            .                                      (9.20) 

Таким образом, общее решение системы (9.14) задается по формулам 

(9.19), (9.20), где 
1

C  и 
2

C  - произвольные постоянные. ► 
 

9.3. Системы линейных дифференциальных уравнений 1-го порядка.  
Среди систем дифференциальных уравнений наиболее изученными и часто 
используемыми в приложениях являются так называемые линейные системы.  

ОПРЕДЕЛЕНИЕ 9.7. Система дифференциальных уравнений называется 
линейной, если она линейна относительно неизвестных функций и их 
производных. 

Система n линейных уравнений 1-го порядка, записанная в нормальной 

форме, имеет вид 

                                                              (9.21) 

 

где  ),,2,1( nk !=  - неизвестные функции переменной x, а 

),,2,1;,,2,1( njnk !! ==  - заданные и непрерывные на некотором интервале 

),( baE =  функции. 

Если все 0)( ≡xf k  на ),( ba  , то линейная система (9.21) принимает вид 
 

                                                                  (9.22) 

 

и называется однородной. В противном случае линейная система (9.21) 

называется неоднородной. 
Важно заметить, что условия теоремы Коши для линейных систем 

уравнений вида (9.21) выполняются в области 
 

         .      (9.23) 
 

Следовательно, при любых начальных условиях вида 
 

                                 ,                   (9.24) 

 

где ),(0 bax ∈ , ),,2,1( nkyk !=+∞<<∞− , задача Коши для системы (9.21) будет 

иметь единственное решение 
 

                                                                 (9.25) 
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удовлетворяющее заданным начальным условиям вида (9.24) (причем это 

решение определено на всем интервале ),( ba ). 

Очень часто неоднородную систему линейных дифференциальных 
уравнений (9.21) удобно использовать в следующей матричной форме 

 

                                                   ,                                                (9.26) 

где 

,   ,   ,   . 

 

Тогда соответствующая однородная система уравнений (9.22) в матричной 

форме запишется так: 

                                                                                                          (9.27) 

 

Сразу отметим, что теория систем линейных уравнений (9.26) (свойства их 
решений, структура общего решения, методы интегрирования) совершенно 
аналогична теории линейных дифференциальных уравнений.  

Сначала остановимся на свойствах решений однородной системы (9.27) 

(доказательства всех утверждений, приводимых ниже, можно найти, например, 
в [21]). 

Теорема 9.1. Если векторы  и  являются 

решениями однородной системы (9.27), то их сумма  также 

является решением этой системы. 

Теорема 9.2. Если вектор  является решением однородной 

системы (9.27), то )(1 xcY  , где с– произвольная постоянная, также является 

решением этой системы. 

FAY
dx

dY
+=

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

dx

xdy

dx

xdy

dx

dY

n )(

...

)(1

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

)(

...

)(

)(

2

1

xy

xy

xy

Y

n
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

)(

...

)(

)(

2

1

xf

xf

xf

F

n
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

)(...)()(

..........

)(...)()(

)(...)()(

21

22221

11211

xaxaxa

xaxaxa

xaxaxa

A

nnnn

n

n

.AY
dx

dY
=

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

)(

...

)(

)(

)(

1

21

11

1

x

x

x

xY

n
ϕ

ϕ

ϕ

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

)(

...

)(

)(

)(

2

22

12

2

x

x

x

xY

n
ϕ

ϕ

ϕ

)()()( 213 xYxYxY +=

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

)(

...

)(

)(

)(

1

21

11

1

x

x

x

xY

n
ϕ

ϕ

ϕ



109 

 

Следствие 9.1. Если векторы  , …,   являются 

решениями однородной системы (9.27), то любая их линейная комбинация  
 

                                       , 
 

где  – произвольные постоянные, является решением этой системы. 

ОПРЕДЕЛЕНИЕ 9.8. Система векторов  

               , , …,                          (9.28) 

называется линейно зависимой на интервале ),( ba , если существуют постоянные 

числа n
αα ,,1 !  такие, что  

 

                              на ),( ba ,                         (9.29) 
 

причем по крайней мере одно из чисел n
αα ,,1 !  не равно нулю. Если же 

тождество (9.29) справедливо только при 0
21

====
n

ααα ! , то система векторов 

(9.28) называется линейно независимой на ),( ba . 

Замечание 9.1. Полезно заметить, что одно векторное тождество (9.29) 

эквивалентно следующей системе из n  скалярных тождеств: 
 

                                                          (9.30) 

 

ОПРЕДЕЛЕНИЕ 9.9. Определитель )(det xW  матрицы 

                                       ,                                       (9.31) 

 

столбцами которой являются векторы )(,),(1 xYxY
n

! , называется определителем 

Вронского или вронскианом этой системы векторов. 
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ОПРЕДЕЛЕНИЕ 9.10. Всякая совокупность из n  линейно независимых на 

),( ba  решений  , , …,  однородной 

системы уравнений (9.27) называется фундаментальной системой решений. 
 

Теорема 9.3. Система из n  решений однородной системы (9.27) с 

непрерывными на ),( ba  коэффициентами будет фундаментальной на ),( ba  тогда 

и только тогда, когда определитель Вронского )(det xW  этой системы 

решений отличен от нуля во всех точках интервала ),( ba . 

Вообще, для определителя Вронского системы n  решений однородной 

системы дифференциальных уравнений (9.27) справедлива следующая 
замечательная формула (см., например, [16], с. 277)

18
: 

  
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+++−⋅= ∫
x

x

nn
dttatataxWxW

0

)]()()([exp)(det)(det 22110 ! ,  ),( bax∈ ,       (9.32) 

 

где 0
x  - любая фиксированная точка из промежутка ),( ba . 

В частности, из формулы (9.32) следует, что если 0)(det 0 ≠xW , то 

0)(det ≠xW  для всех ),( bax∈ . 

Теорема 9.4. Если (9.28) - фундаментальная система частных решений 

однородной системы дифференциальных уравнений (9.27) с непрерывными на 

),( ba  коэффициентами,  то его общее решение в области (9.23) задается в виде 
 

                                   ,                             (9.33) 
 

где  – произвольные постоянные. 

Пример 9.3. Известно, что векторы  и  

являются частными решениями линейной однородной системы 

дифференциальных уравнений 

                                                                                                 (9.34) 

 

на интервале . Требуется найти общее решение системы (9.34). 
 

                                                
18

 Обычно эта формула называется формулой Остроградского-Лиувилля. 
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РЕШЕНИЕ. Заметим, что определитель Вронского данной системы 

решений отличен от нуля на , так как . 

Следовательно, данная система частных решений является фундаментальной. 

Поэтому общее решение системы уравнений (9.34) можно задавать в виде 
 

  или ,  , 

 

где  – произвольные постоянные. ► 

Теорема 9.5. Если  - какое-либо частное решение линейной 

неоднородной системы уравнений (9.26) с непрерывными на ),( ba  

коэффициентами  и правыми частями , а )(,),(1 xYxY
n

!  - какая-

нибудь фундаментальная система решений соответствующей однородной 

системы уравнений (9.27),  то общее решение (в области (9.23)) неоднородной 

системы уравнений (9.26) задается в виде 
 

                           ,                          (9.35) 
 

где  – произвольные постоянные. 

Другими словами, структура общего решения линейной неоднородной 

системы дифференциальных уравнений такова: 
 

                                               
 

В заключение отметим, что если известна какая-нибудь фундаментальная 
система частных решений однородной системы дифференциальных уравнений 

(9.27), то частное решение соответствующей неоднородной системы (9.26) 

можно найти методом вариации произвольных постоянных (методом Лагранжа), 
т.е. в виде  

                            ,                        (9.36) 
 

где )(,),(),( 21 xcxcxc
n

!  - неизвестные функции от x, подлежащие определению. 

Действительно, подставляя значения  
 

                           

и ее производной   в левую часть (9.26), получаем 

                         . 
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Но так как , то для определения )(,),(),( 21 xcxcxc
n

!  получаем 

систему алгебраических уравнений  , или в развернутом виде 

                                               (9.37) 

 

Основной определитель системы (9.37) есть определитель Вронского  

фундаментальной системы решений )(,),(1 xYxY
n

! . В силу теоремы 9.3 он отличен 

от нуля на интервале . Поэтому система алгебраических уравнений (9.37) 

имеет единственное решение , ,…, , где , 

, …,  - известные непрерывные на ),( ba  функции. Отсюда с помощью 

интегрирования находим , ,…, 

 (здесь для определенности постоянные интегрирования мы 

берем равными нулю). Тогда искомое частное решение неоднородной системы 

(9.26) будет иметь вид 
 

                       . 
 

Пример 9.4. Решить систему уравнений 

                                                                                              (9.38) 

РЕШЕНИЕ. Данную систему дифференциальных уравнений будем решать 
двумя различными способами: 1) методом вариации произвольных постоянных 

и 2) методом исключения.  

Первый способ. Заметим, что однородная система уравнений (9.34), 

рассмотренная в примере 9.3, является соответствующей для данной 

неоднородной системы (9.38). Мы уже знаем, что общее решение однородной 

системы (9.34) задается формулой 
 

                                            ,                                    (9.39) 

 

где  – произвольные постоянные. Следовательно, частное решение 

неоднородной системы (9.38) можно искать в виде: 
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                                          ,                               (9.40) 

 

где  и  - пока неизвестные функции от x, подлежащие определению. 

Для определения функций  и  составляем систему алгебраических 

уравнений вида (9.37): 

                                                                                (9.41) 

 

Решая алгебраическую систему (9.41), находим 
 

 

                       и . 
 

Наконец, с помощью интегрирования из последних соотношений получим 
 

                ,       
19

. 

 

Тогда, в силу (9.35), (9.39) и (9.40), общее решение системы уравнений (9.38) 

получим по формуле  

                         

или в развернутой форме 

      ,  ,   (9.42) 

 

где  – произвольные постоянные. 
 

Второй способ. Дифференцируя, из первого уравнения системы (9.38) 

будем иметь 

                                          . 

Подставляя в правую часть последнего уравнения вместо  выражение 

для нее, получаемое из второго уравнения системы (9.38), найдем, что 
 

                                            .                                            (9.43) 

                                                
19

 Поскольку нам нужно найти какое-нибудь частное решение неоднородной системы (9.38), то здесь 
считаем, что постоянные, возникающие при интегрировании, равны нулю. 
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Соответствующее (9.43) однородное уравнение имеет вид: 
 

                                             .                                                     (9.44) 

 

Общее решение однородного уравнения (9.44) можно задавать так: 
 

                                       ,                                         (9.45) 
 

где  – произвольные постоянные. Частное решение неоднородного 

линейного уравнения 2-го порядка (9.43) будем находить методом вариации 

произвольных постоянных, т.е. в виде    
 

                                     ,                                 (9.46) 
 

где  и  - пока неизвестные функции, для определения которых нужно 

решить следующую систему алгебраических уравнений Лагранжа: 
 

                                                                     (9.47) 

 

Решая систему (9.47), находим 
 

                      . 
 

Отсюда, интегрируя, получаем 

. 

Подставляя найденные выражения для  и  в правую часть (9.46), 

имеем 

                                                  . 

Следовательно, общее решение дифференциального уравнения (9.43) задается в 
виде 

                                        ,                              (9.48) 

 

где  – произвольные постоянные. 

Далее, из первого уравнения системы (9.38) имеем 

                                                   . 

Подставив в правую часть последнего равенства вместо  производную 

функции, найденной по формуле (9.48), окончательно получим 
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                                    ,                          (9.49) 

 

где  – произвольные постоянные.  

Таким образом, общее решение системы (9.38) задается по формулам (9.48) 

и (9.49). ► 

9.4. Матричный метод интегрирования однородных систем линейных 
дифференциальных уравнений. Из теоремы 9.4 видно, что при построении 

общего решения однородной системы линейных дифференциальных уравнений 

1-го порядка (9.27) достаточно найти какую-нибудь фундаментальную систему 

частных решений этой системы (см. теорему 9.4). Более того, по известной 

фундаментальной системе решений )(,),(1 xYxY
n

!   однородной системы линейных 

дифференциальных уравнений (9.27) вполне конструктивно (например, методом 

вариации произвольных постоянных) строится общее решение соответствующей 

неоднородной системы уравнений (9.26) (теорема 9.5). 

Однако общее решение однородной системы (9.27) можно также 
построить, пользуясь понятием так называемой  фундаментальной матрицы. 

Пусть векторы  

                                  , …,                                (9.50) 

 

образуют фундаментальную систему частных решений однородной системы 

дифференциальных уравнений (9.27). 

ОПРЕДЕЛЕНИЕ 9.10. Квадратная матрица  
 

                                        ,                                       (9.51) 

 

столбцами которой являются векторы (9.50), называется фундаментальной 
матрицей этой однородной системы дифференциальных уравнений. 

В дальнейшем ради краткости матрицу вида (9.51) часто будем обозначать 

так:  . 

С учетом определения 9.10 теорему 9.4 можно переформулировать в 
следующем виде. 
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Теорема 9.4а. Если  - фундаментальная матрица однородной 

системы уравнений (9.27) с непрерывными на  коэффициентами,  то ее 

общее решение в области (9.23) задается в виде 
 

                                                ,                                               (9.52) 

где  – постоянная матрица-столбец с произвольными элементами. 

Таким образом, в силу формулы (9.52) для полного решения однородной 

системы дифференциальных уравнений (9.27) достаточно найти какую-нибудь 
фундаментальную матрицу этой системы. 

ОПРЕДЕЛЕНИЕ 9.11. Матричное уравнение вида 
 

                                                  ,                                               (9.53) 

где  - неизвестная квадратная -матрица, а , 

будем называть матричным дифференциальным уравнением, 

соответствующим однородной системе линейных дифференциальных 

уравнений (9.27). 

Нетрудно проверить, что всякая фундаментальная матрица  

системы (9.27) удовлетворяет на  матричному уравнению вида (9.53), т.е. 
 

                                           ,                                            (9.54) 

где  , а . 

Более того, справедливо следующее важное утверждение (см., например, 
книгу Коддингтон Э.А., Левинсон Н. Теория обыкновенных дифференциальных 
уравнений. – М., Изд-во иностранной литературы, 1958, с. 81). 

Теорема 9.6. Для того чтобы решение  матричного уравнения 

(9.53) было фундаментальной матрицей системы (9.27), необходимо и 

достаточно, чтобы  . 

На основании теоремы 9.6 легко устанавливается следующая теорема. 

Теорема 9.7. Если  - какая-нибудь фундаментальная матрица 

однородной системы уравнений (9.27), а  - постоянная невырожденная 

матрица, то  также является фундаментальной матрицей однородной 

системы уравнений (9.27). Каждая фундаментальная матрица  однородной 

системы уравнений (9.27)  может быть представлена в виде  
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                                                  ,                                                      (9.55) 
 

где  - некоторая постоянная невырожденная матрица. 

Доказательство. Пусть  - какая-нибудь фундаментальная 

матрица однородной системы уравнений (9.27). Тогда имеет место тождество 
(9.54). Из (9.54) вытекает, что для любой невырожденной постоянной матрицы 

 имеет место соотношение: 

                    или  , . 

Итак, матрица  является решением матричного уравнения (9.53). 

Кроме того, . Следовательно, согласно теореме 9.6 

матрица  является фундаментальной для системы (9.27). 

Покажем теперь, что для любых двух фундаментальных матриц  и  

имеет место соотношение , где  - некоторая постоянная 

невырожденная матрица. В самом деле, допустим, что . Тогда 

. Дифференцируя из последнего соотношения будем иметь:  
 

                                              '
11

Ψ⋅Φ+Ψ⋅Φʹ=Ψʹ .                                          (9.56) 
 

Но поскольку  и  - фундаментальные матрицы системы (9.27), то имеем: 

 и . С учетом последних тождеств из (9.56) получим  

  или . Так как , то из предыдущего 

равенства имеем: , т.е. матрица  является постоянной, причем 

. Теорема полностью доказана. ► 

Замечание 9.2. Важно отметить, что если  - какая-нибудь 

фундаментальная матрица однородной системы уравнений (9.27), а  - 

постоянная невырожденная матрица, то матрица  , вообще говоря, не 
является фундаментальной матрицей системы (9.27). 

Замечание 9.3. Отметим, что по заданной фундаментальной матрице 

 однородной системы линейных дифференциальных уравнений (9.27) 

матрица  ее коэффициентов определяется однозначно по формуле: 

. Другими словами, две различные однородные системы линейных 

дифференциальных уравнений не могут иметь одну и ту же фундаментальную 

матрицу. 
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ОПРЕДЕЛЕНИЕ 9.12. Фундаментальная матрица  

однородной системы уравнений (9.27) называется нормированной в точке 
, если  

                                                   , 
 

где - единичная матрица порядка n  . При этом фундаментальная система   

частных решений однородной системы (9.27), являющихся столбцами 

фундаментальной матрицы , также называется нормированной в 

точке . 

В силу формулы Остроградского-Лиувилля (9.32), нормированная в точке 

 фундаментальная матрица однородной системы (9.27) определяется 

единственным образом. 

После изложенного выше в настоящем пункте, возникает естественный 

вопрос: существует ли эффективный на практике способ построения 

фундаментальной матрицы однородной системы (9.27)? Ниже будет 
установлено, что, например, для однородных систем дифференциальных 
уравнений с постоянными коэффициентами  ответ на поставленный вопрос 
положительный. 

Для этого введем в рассмотрение некоторые вспомогательные понятия. 

Пусть  - произвольная квадратная матрица, элементы которой 

являются непрерывными на  функциями. 

Операция интегрирования матрицы  на интервале  

определяется так: 

                            или  . 

 

Норма матрицы  определяется следующим образом: 
 

                                                 .                                   

 

ОПРЕДЕЛЕНИЕ 9.13. Говорят, что последовательность матриц  имеет 

своим пределом матрицу , если для любого  можно указать такое 

натуральное число , что при  выполняется неравенство . При 

этом пишут: . 
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ОПРЕДЕЛЕНИЕ 9.14. Ряд  называется сходящимся, если имеет 

предел последовательность  частичных сумм данного ряда, а суммой ряда 

называется предельная матрица  для частичных сумм, т.е. . 

Экспонента  матрицы  определяется следующим образом: 
 

                                           ,                                                   (9.57) 

 

где - единичная матрица порядка . 

Легко проверить, что если матрицы  и  коммутируют (т.е. ), то 

. 

Для производной от целой положительной степени матрицы  имеет 

место формула: 

                                        .                                        (9.58) 

 

В частном случае, когда матрица  коммутирует со своей производной 

(т.е. ) вместо формулы (9.58) получаем 

                                        . 

Кроме того, если , то имеет место важная формула: 
 

                                                      .                                               (9.59) 

 

В частности, если , где  - постоянная матрица, то из (9.59) 

получим: 

                                        .                                   (9.60) 

 

Справедливо следующее утверждение. 
Теорема 9.8. Пусть задана однородная система дифференциальных 

уравнений вида (9.27) с постоянными коэффициентами, т.е.  матрица ,)( 0AxA =  

где  - постоянная матрица.  Тогда в качестве фундаментальной матрицы 

этой системы уравнений  можно взять матрицу вида 
 

                                                 .                                                  (9.61) 
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Доказательство. В самом деле, дифференцируя (9.61) (с учетом (9.60)), 

получаем 

                                  . 

 

Так как , то матрица вида (9.61) действительно является 

фундаментальной матрицей системы уравнений вида . Теорема 

доказана.  

Замечание 9.4. В силу теоремы 9.7 всевозможные фундаментальные 

матрицы однородной системы  с постоянными коэффициентами 

содержатся в следующей формуле: 
 

                                             ,                                                 (9.62) 
 

где  - произвольная постоянная невырожденная матрица. 
Таким образом, в силу теоремы 9.8 для однородных систем линейных 

дифференциальных уравнений с постоянными коэффициентами проблема 

построения фундаментальной матрицы решается по формуле (9.61). 

Кроме того, согласно теореме 9.4а общее решение системы уравнений 

 с постоянными коэффициентами можно задавать так: 
 

                                                 ,                                           (9.63) 

где  – постоянная матрица-столбец с произвольными элементами. 

Пример 9.5. Матричным методом решите следующую систему 

дифференциальных уравнений:   

РЕШЕНИЕ. Данная система в векторно-матричной форме записи имеет 
вид: 

                                                     , 

где , . Следовательно, согласно формуле (9.63), общее 

решение данной системы уравнений можно задавать так: , где  
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 – постоянная матрица-столбец с произвольными элементами. Нетрудно 

проверить, что здесь . Таким образом, общее решение 

данной системы имеет вид: , , где 

,  - произвольные постоянные. ► 
 

9.5. Матричный метод интегрирования неоднородных систем 

линейных дифференциальных уравнений. Оказывается, если задана 
фундаментальная матрица однородной системы линейных дифференциальных 
уравнений (9.27), то достаточно легко строится (методом вариации 

произвольных постоянных) решение неоднородной системы уравнений (9.26). А 

именно, справедливо следующее утверждение. 

Теорема 9.8. Если  - фундаментальная матрица однородной 

системы уравнений (9.27), то вектор-функция  
 

                                          , ,                         (9.64) 

 

есть частное решение неоднородной системы уравнений (9.26), 

удовлетворяющее начальному условию  
 

                                                          .                                                    (9.65) 
 

Доказательство. Будем искать требуемое частное решение неоднородной 

системы уравнений (9.26) в виде 
 

                                               ,                                            (9.66) 

где  – неизвестная вектор-функция, подлежащая определению. 

Дифференцируя (9.66), получим  
 

. 
 

Итак, для того чтобы вектор-функция вида (9.66) было решением системы 

уравнений (9.26) должно выполняться тождество: 
 

         или . 
 

Из последнего тождества имеем: . Отсюда с помощью 
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                                              .                                        (9.67) 

 

Наконец, подставив в правую часть равенства (9.66) вместо  ее значение, 

найденное по формуле (9.67), получим формулу (9.64). Теорема доказана. ► 

Замечание 9.5. Заметим, что в условиях теоремы 9.8 частное решение  

неоднородной системы уравнений (9.26), удовлетворяющее начальному 
условию  

                                                                                                           (9.68) 
 

(здесь , ), можно задавать в виде  
 

                                , ,                  (9.69) 

 

где  - частное решение однородной системы уравнений (9.27), 

удовлетворяющее начальному условию . 

 

Пример 9.6. Найти частное решение системы дифференциальных 

уравнений  удовлетворяющее начальному условию . 

 

РЕШЕНИЕ. Из решения примера 9.5 видно, что здесь фундаментальная 
матрица соответствующей однородной системы уравнений имеет вид:  

 

                   , а .  

Так как , то по формуле (9.64) будем иметь:  

 

                          .► 

 

 

 

 

II. КОНТРОЛЬНЫЕ ВОПРОСЫ И ЗАДАНИЯ 
 

1. Какая система дифференциальных уравнений называется нормальной ? 

2. Что называется решением нормальной системы дифференциальных 
уравнений ? 
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3. В чём состоит задача Коши для нормальной системы дифференциальных 
уравнений ? 

4. Сформулируйте теорему Коши для нормальной системы 

дифференциальных уравнений. 

5. Дайте определение общего (частного) решения нормальной системы 

дифференциальных уравнений. 

6. Какова геометрическая интерпретация задачи Коши и теоремы Коши для 
нормальной системы из двух дифференциальных уравнений ? 

7. К какой нормальной системе дифференциальных уравнений можно свести 

уравнение n-го порядка вида   ? 

8. Какой вид имеет нормальная система n линейных неоднородных 
(однородных) уравнений 1-го порядка в векторной форме? 

9. Дайте определение фундаментальной на интервале  системы частных 

решений линейной однородной системы дифференциальных уравнений. 

10. Что называется определителем Вронского системы векторов? 

11. Какие основные выводы можно получить из формулы Остроградского-
Лиувилля?  

12. Какова структура общего решения однородной (неоднородной) системы 

линейных дифференциальных уравнений 1-го порядка?  

13. В чем состоит суть метода вариации произвольных постоянных при 

решении неоднородных систем линейных уравнений?  

14. Какая матрица называется фундаментальной матрицей однородной 

системы линейных уравнений (9.27)? 

15. В чем главный смысл матричного метода решения систем линейных 
дифференциальных уравнений? 

16. Для какого класса систем линейных дифференциальных уравнений вполне 
эффективно вычисляется фундаментальная матрица ? 

 

 

III. ПРИМЕРЫ И ЗАДАЧИ ДЛЯ АУДИТОРНОЙ РАБОТЫ 

 

9.1. Решите следующие системы дифференциальных уравнений: 

                   а)             б)  

 

9.2. Найдите частное решение системы дифференциальных уравнений,  

       удовлетворяющее указанным начальным условиям:  
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9.3. Используя различные способы (метод исключения, метод интегрируемых 
комбинаций, матричный метод) решите следующую систему 

дифференциальных уравнений:   

 

 

IV. ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ 
 

9.4. Решите системы дифференциальных уравнений: 

             а)                         б)  

 

9.5. Найдите частное решение системы дифференциальных уравнений, 

удовлетворяющее указанным начальным условиям: 

                                 

 

9.6. Матричным методом решите следующую систему уравнений: 

                                             

 

9.7. Используя метод вариации произвольных постоянных найдите общее 

решение системы дифференциальных уравнений:   
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ЗАНЯТИЕ № 10 

 

Тема: Однородные системы линейных дифференциальных уравнений 

      1-го порядка с постоянными коэффициентами. Метод Эйлера 
 

I. ОСНОВНЫЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ 

 

10.1. Однородные системы линейных дифференциальных уравнений 

1-го порядка с постоянными коэффициентами. Как уже было отмечено в 
пунктах 9.3-9.4, при решении неоднородных систем линейных 
дифференциальных уравнений наиболее существенную роль играет 
установление какой-нибудь фундаментальной системы частных решений 

соответствующих однородных систем линейных дифференциальных уравнений. 

Поэтому ниже излагается один из эффективных способов построения 
фундаментальной системы частных решений для однородных систем n 

линейных дифференциальных уравнений 1-го порядка с постоянными 
коэффициентами, т.е. для систем вида 

 

                                                                     (10.1) 

 

где  ( nk ,,2,1 != ) – неизвестные функции переменной , а  

nk ,,2,1( != ;  ),,2,1 nj !=  – заданные вещественные постоянные, т.е. R. 

Сразу отметим, что условия теоремы Коши для линейных однородных 
систем уравнений вида (10.1) выполняются в области =G R . Следовательно, 
при любых начальных условиях вида 
 

                             ,                   (10.2) 

 

где , , задача Коши (10.1)-

(10.2) будет иметь единственное решение 
 

                                                                      (10.3) 
 

причем это решение определено на всей числовой прямой . 

Однородная система линейных дифференциальных уравнений (10.1) в 
матричной форме можно записать так: 
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                                                       ,                                                (10.4) 

где 

              ,       ,     .             (10.5) 

 

Из результатов пункта 9.4 нам известно (см. теорему 9.4а), что если 
известна какая-нибудь фундаментальная система частных решений  
 

                     ,   , …,    ,          (10.6) 

 

или, то же самое, если известна фундаментальная матрица  
 

                                     ,                                             (10.7) 

 

то общее решение системы (10.1) задается в виде 
 

                                                     ,                                                   (10.8) 

где  – постоянная матрица-столбец с произвольными элементами. 

Таким образом, в силу формулы (10.8) для полного решения однородной 

системы дифференциальных уравнений (10.1) достаточно найти какую-нибудь 
её фундаментальную систему частных решений (или, то же самое, что найти 

какую-нибудь фундаментальную матрицу этой системы). 

Мы уже знаем, что одним из часто используемых методов решения систем 

вида (10.1) является метод исключения, когда путем исключения неизвестных 
функций такая система сводится к одному или нескольким линейным 

однородным дифференциальным уравнениям с одной неизвестной функцией в 
каждом. Но метод исключения не всегда может оказаться наиболее 
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рациональным способом решения систем дифференциальных уравнений вида 
(10.1). 

Еще в XVIII столетии великий швейцарский математик Леонард Эйлер 
заметил, что для систем линейных дифференциальных уравнений с 
постоянными коэффициентами можно достаточно простым способом найти 

какую-нибудь её фундаментальную систему частных решений. 

Следуя Л. Эйлеру, будем искать нетривиальные решения системы (10.1) в 
виде 

                                       ,                          (10.9) 
 

где  – некоторое число, а числа  не равны одновременно нулю, т.е. 

. Подставляя функции вида (10.9) в систему (10.1), получим 

                                                            (10.10) 

 

В векторно-матричной форме система (10.10) имеет вид: 
 

                                                      .                                          (10.11) 
 

Из линейной алгебры известно, что для того чтобы система (10.10) 

линейных однородных алгебраических уравнений с  неизвестными  

имела нетривиальное (ненулевое) решение, необходимо и достаточно, чтобы 

определитель системы (10.9) был равен нулю: 
 

                                  .                        (10.12) 

 

В матричной форме уравнение (10.12) можно записать так: 
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Ясно, что если матрица  вида (10.5) является заданной, то (10.12) (или 

(10.13)) представляет собой алгебраическое уравнение -го порядка (с 
вещественными коэффициентами!) относительно неизвестного параметра . 
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ОПРЕДЕЛЕНИЕ 10.1. Уравнение (10.13) называется характеристическим 

уравнением системы (10.1), а корни уравнения (10.13) называются 
характеристическими числами системы (10.1)

20
. 

Далее отдельно рассмотрим три характерных случая относительно корней 

характеристического уравнения:  
1) все корни  уравнения (10.13) различные и действительные; 

2) все корни  уравнения (10.13) различные, но среди них 

имеются комплексные; 

3) уравнение (10.13) имеет кратные корни. 
 

10.2. Случай, когда характеристическое уравнение (10.13) имеет 
различные и действительные корни. 

Пусть корни   уравнения (10.13) различные и действительные. 

В этом случае, подставляя поочередно каждый корень 
k
λ   вместо  

в систему (10.11), получаем n  различных систем алгебраических уравнений 

вида:  
 

                                                             (10.14) 

 

Далее, для каждого фиксированного корня 
k
λ  ( nk ,,2,1 != ) находим 

нетривиальное решение  соответствующей системы уравнений вида 

(10.14) (т.е.  – собственный вектор матрицы A, соответствующий 

собственному значению 
k
λ ). Тогда при каждом фиксированном значении 

параметра  ( nk ,,2,1 != )  набор функций  
 

                                 ,                       (10.15) 
 

                                                
20

 В линейной алгебре уравнение (10.13) обычно называют характеристическим уравнением матрицы A, 

корни 
k

λ  (k = 1, 2,…,n) уравнения (10.13) – собственными значениями матрицы A, а соответствующие им 

ненулевые вектора , удовлетворяющие уравнению вида (10.11), называются собственными 

векторами этой матрицы. 
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образует частное решение системы дифференциальных уравнений (10.1). Таким 

образом, для линейной однородной системы (10.1) получаем n  частных решений 

вида: 

                     , ,…, .           (10.16) 

 

Нам в дальнейшем потребуются следующие две леммы. 

Лемма 10.1. Система функций 
 

                                              ,                                           (10.17) 
 

где  при , является линейно независимой на любом интервале ),( ba . 

Доказательство. Будем доказывать лемму методом от противного. 
Предположим, что данная система функций линейно зависима на ),( ba , т.е.  

имеет место тождество 
 

                             ,                   (10.18) 
 

где хотя бы одно . Пусть для определенности . Тогда, разделив обе 

части тождества (10.18) на , а затем, продифференцировав полученное 
тождество, будем иметь:  
 

                 . 
 

В свою очередь, разделив обе части последнего тождества на  и 

дифференцируя, получим тождество  
 

                 . 
 

Продолжая этот процесс  раз, получим  
 

                                .        
 

Но последнее тождество противоречит нашему предположению о том, что 

. Полученное противоречие доказывает, что тождество (10.18) возможно 

лишь при , т.е. система функций (10.17) линейно независима на 

),( ba .► 

Замечание 10.1. Как видно из доказательства леммы 10.1, утверждение 
этой леммы справедливо и в том случае, когда числа 

k
λ  являются комплексными. 

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

x

n

x

x

e

e

e

xY

1

1

1

1

21

11

1
...

)(

λ

λ

λ

α

α

α

!

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

x

n

x

x

e

e

e

xY

2

2

2

2

22

12

2
...

)(

λ

λ

λ

α

α

α

!

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

x

nn

x

n

x

n

n

n

n

n

e

e

e

xY

λ

λ

λ

α

α

α

...
)(

2

1

!

xxx
n

eee
λλλ

...,,, 21

jp λλ ≠ jp ≠

),(,0...21

21
baxeee

x

n

xx n ∈∀≡+++
λλλ γγγ

0≠
j

γ 0≠
n
γ

x

e
1
λ

),(,0)(...)(
)(

1
)(

122
112 baxee

x

nn

x n ∈∀≡−++− −− λλλλ λλγλλγ

x
e

)( 12 λλ −

0))((...))((
)(

21

)(

23123

223 ≡−−++−−
−− x

nnn

x
n

ee
λλλλ λλλλγλλλλγ ),( bax∈∀

1−n

,0))...()((
)(

121

1 ≡−−− −−

−

x

nnnnn

nn

e
λλλλλλλλγ ),( bax∈∀

0≠
n
γ

0...
21

====
n
γγγ



130 

 

Лемма 10.2. Если все корни  характеристического уравнения 

(10.13) различные и действительные, то  частных решений вида (10.16) 

образует фундаментальную систему решений однородной системы линейных 

дифференциальных уравнений (10.1). 

Доказательство. Здесь достаточно показать, система из  частных 
решений вида (10.16) линейно независима на ),( +∞−∞  , т.е. тождество  
 

                                 , ),( +∞−∞∈x ,                  (10.19) 
 

возможно тогда и только тогда, когда  
 

                                                     .                                           (10.20) 
 

Действительно, в развернутой форме (10.19) имеет вид: 

                                                                                            (10.21) 

Но в силу линейной независимости системы функций 
xke

λ
 ( nk ,,2,1 != ) 

(см. лемму 10.1), из (10.21) следует  
 

                                              .                 (10.22) 

 

Поскольку при каждом значении параметра , хотя бы одно из чисел 

 ( nk ,,2,1 != ) отлично от нуля, то из (10.22) следует равенства 

(10.20).► 

Как непосредственное следствие из леммы 10.2 получаем следующее 
важное утверждение.  

Теорема 10.2. Если все корни  характеристического уравнения 

(10.13) различные и действительные, то общее решение однородной системы 

дифференциальных уравнений (10.1) можно задавать в виде 
 

                                   ,                            (10.23) 
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где  - частные решения вида (9.16), а  – произвольные 

постоянные. 

Пример 10.1. Методом Эйлера решить следующую систему линейных 
дифференциальных уравнений: 

                                                                                           (10.24) 

РЕШЕНИЕ. Будем искать частные решения данной системы в виде 

 Для этого составляем характеристическое уравнение: 
 

                                  или  032
2

=−+ λλ . 

 

Корнями характеристического уравнения являются числа 1
1
=λ   и 3

2
−=λ . 

В данном случае система уравнений (10.11) выглядит так: 
 

                                                                                        (10.25) 

 

Далее, подставляя в (10.25) 1=λ , получаем 

                                                  

Одним из нетривиальных решений последней системы является, например, 

. Следовательно, система функций ,  образует одно из 

частных решений системы (10.24), т.е. здесь . 

Полагая в (10.25) , будем иметь: 

                                                  

Очевидно, что одним из нетривиальных решений последней системы 

алгебраических уравнений является . Значит, система функций 

,  образует одно из частных решений системы (10.24), т.е. 

здесь . 

Следовательно, общее решение системы (10.24) можно задавать в виде  

                                                 ,  
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где  – произвольные постоянные. 

В развернутой форме полученное общее решение можно записать так: 

                                 ,   ,  

где  – произвольные постоянные.► 
 

10.3. Случай, когда характеристическое уравнение (10.13) имеет 
различные корни, но некоторые из них комплексные. 

 

ОПРЕДЕЛЕНИЕ 10.2. Если каждому значению переменной ),( bax∈  по 

некоторому правилу f  поставлено в соответствие определенное комплексное 

число ivu + , где 1
2

−=i , а ∈vu, R, то говорят, что на интервале ),( ba  задана 

комплекснозначная функция )()()( xivxuxf +=  действительного аргумента x . 

При этом )(xu  называется действительной частью f , а )(xv  - мнимой частью 

f , причем для них приняты следующие обозначения: )(Re)( xfxu = , 

)(Im)( xfxv = . 

Если функции )(Re)( xfxu =  и )(Im)( xfxv =  дифференцируемы m  раз на 

),( ba , то производные порядка p  ( mp ≤≤1 ) функции )()()( xivxuxf +=  

определяются так: 

                             )()()( )()()( xivxuxf ppp
+= ,  ),( bax∈∀ . 

Например, для всех ),( ∞+−∞∈x  определена комплекснозначная функция 

вида xixx sincos)( +=ϕ , причем здесь xx cos)(Re =ϕ , xx sin)(Im =ϕ . При этом 

производная xixx cossin)(' +−=ϕ . 

Рассмотрим теперь две вектор-функции вида 
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Тогда комплекснозначная вектор-функция )()( xiVxU +  определяется так: 
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Производная вектор-функции )()( xiVxU +  определяется по формуле:  
 

                                       ( ) )(')('')()( xiVxUxiVxU +=+ .                                   (10.28) 
 

Справедливо следующее утверждение. 
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Лемма 10.3. Если однородная система дифференциальных уравнений 

(10.1) с действительными коэффициентами имеет комплекснозначное решение 

вида (10.27), то действительная и мнимая части вида (10.26) в отдельности 

являются решениями системы (10.1). 

Доказательство. Ради краткости будем пользоваться векторно-
матричными записями. 

Пусть вектор (10.27) является решением системы (9.1), т.е.  
 

                                             )(
)(

iVUA
dx

iVUd
+≡

+
.  

 

Отсюда, в силу (10.28) и равенства iAVAUiVUA +=+ )( , имеем: 
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т.е. векторные функции )(xU  и )(xV  в отдельности являются решениями 

системы дифференциальных уравнений (10.1).► 

Пусть характеристическое уравнение (10.13) имеет n  различных корней, 

но среди них имеются и комплексные корни. Характеристическое уравнение 
(10.13) является алгебраическим уравнением с вещественными 

коэффициентами. Следовательно, если iba+  - корень уравнения (10.13), то 
iba −  тоже будет корнем этого уравнения.  
Предположим, что корню iba+  характеристического уравнения (10.13) 

соответствует собственный вектор 
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Тогда вектор-функция вида  
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представляет собой комплекснозначное частное решение однородной системы 

дифференциальных уравнений (10.1). В силу формул Эйлера имеем: 
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Отделяя (с учетом (10.31)) в решении (9.30) действительные и мнимые части, 

получим 
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В силу леммы 10.3  вектор-функции )(xU
!

 и )(xV
!

 в отдельности являются 

действительными частными решениями системы (10.1), причем нетрудно 
проверить, что эти решения линейно независимы. 

Аналогично можно построить пару действительных частных решений, 

соответствующих корню iba − , но они окажутся линейно зависимыми с 

частными решениями )(xU
!

 и )(xV
!

. 

Таким образом, паре сопряженных комплексных корней iba +  и iba −  

соответствуют два линейно независимых действительных частных решения )(xU
!

 

и )(xV
!

, которые получаются из комплекснозначного решения (10.30), 

соответствующего корню iba + , отделением действительных и мнимых частей. 

Построив действительные частные решения, соответствующие всем парам 

комплексно-сопряженных корней и всем вещественным корням (если таковые 
имеются), получим n  линейно независимых частных решений системы (10.1), 

т.е. фундаментальную систему частных решений этой системы. Тогда, взяв 
линейную комбинацию полученной фундаментальной системы частных 
решений с произвольными постоянными коэффициентами, получим общее 

решение однородной системы (10.1). 
 

Пример 10.2. Методом Эйлера решить следующую систему линейных 
дифференциальных уравнений: 

                                                   

⎪
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                                    (10.32) 

 

РЕШЕНИЕ. Здесь характеристическое уравнение 
 

                               0
25

14
=

−
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λ

λ
 или 0136

2
=+− λλ   
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имеет два комплексно-сопряженных корня: 23
1

i+=λ  и 23
2

i−=λ . Собственный 

вектор ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2

1

α

α
α , соответствующий корню 23

1
i+=λ , находим из системы 

                                             
⎩
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.0)21(5

,0)21(

21

21

αα

αα

i

i
 

 

Последняя система имеет следующее ненулевое решение 1
1
=α , i21

2
−=α . 

Следовательно, комплекснозначная вектор-функция вида  
 

                                          ⎟
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является решением системы (10.32). Выделив действительные и мнимые части 

полученного решения, будем иметь: 
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Следовательно, общее решение данной системы дифференциальных уравнений 

можно задавать так: 
 

                     ,
)2cos22(sin
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где 
21

, cc  – произвольные постоянные.► 
 

10.4. Случай, когда характеристическое уравнение (10.13) имеет 
кратные корни. Предположим, что среди корней характеристического 
уравнения (10.13) имеется корень 

1
λ  кратности k . В этом случае можно доказать, 

что корню 
1
λ  кратности k  будет соответствовать решение системы 

дифференциальных уравнений (9.1) следующего вида 
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,                                              (10.33) 

 

где )(...,),(),( 21 xPxPxP
n

 – многочлены от x  степени не выше 1−k , имеющие в 

совокупности k  произвольных коэффициентов. При этом может оказаться, что 
все эти многочлены вырождаются в постоянные (т.е. являются многочленами 

нулевой степени), а решение (10.33) тогда принимает вид: 
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где среди коэффициентов 
n
γγγ ...,,,

21  ровно k  являются произвольными, а 

остальные выражаются через них. 
Далее, полагая в решении вида (10.33) один из произвольных 

коэффициентов многочленов равным единице, а остальные равными нулю, 

можно построить ровно k  линейно независимых частных решений системы 

(10.1). 

Здесь нужно различать два подслучая: а) корень 
1
λ  действительный; 

б) корень 
1
λ  комплексный. 

Если 
1
λ  – действительное характеристическое число, то построенные 

вышеуказанным способом k  линейно независимых частных решений системы 

(10.1) будут действительными. 

Если же iba+=
1
λ  является комплексным характеристическим числом 

кратности k , то число iba −=1λ  также будет характеристическим числом 

кратности k . В этом случае построив сначала вышеуказанным способом k  

линейно независимых частных решений системы (10.1) соответствующих числу 
iba+=

1
λ , а затем, отделив в них действительные и мнимые части, получим k2  

действительных линейно независимых решений системы (10.1). Таким образом, 

паре сопряженных комплексных характеристических чисел iba +=
1
λ  и iba −=1λ  

(кратности k ) будет соответствовать ровно k2  действительных линейно 

независимых решений системы (10.1). 

В общем случае, построив для каждого характеристического числа 
соответствующие ему действительные линейно независимые частные решения 
системы дифференциальных уравнений (10.1), получим всего n  

действительных линейно независимых частных решений этой системы, которые 
и образуют фундаментальную систему решений системы (10.1). По найденной 

таким способом фундаментальной системе решений можно построить и общее 

решение системы (10.1). 

 

ОБЩИЙ ВЫВОД: однородная система линейных дифференциальных 
уравнений с постоянными коэффициентами интегрируется в элементарных 
функциях, т.е. любое ее решение можно задавать в виде элементарных функций. 
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Пример 10.3. Методом Эйлера решить следующую систему линейных 
дифференциальных уравнений: 
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                                   (10.35) 

РЕШЕНИЕ. Для данной системы дифференциальных уравнений (10.35) 

система алгебраических уравнений (10.11) выглядит так: 
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                                    (10.36) 

а характеристическое уравнение имеет вид: 

                                   0

111

111
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=
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λ
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λ

  или  043
23

=−+ λλ .           (10.37) 

Нетрудно проверить, что число 1
1
=λ  является простым корнем уравнения 

(10.37), а число 2
2

−=λ  является двукратным корнем уравнения (10.37). 

Сначала найдем решение системы (10.35), соответствующее простому 

характеристическому числу 1
1
=λ . Для этого полагая в (10.36) 1

1
== λλ  получим 

следующую систему алгебраических уравнений:  
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                                              (10.38) 

Очевидно, что координаты вектора 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
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α   удовлетворяет системе (10.38), т.е. 
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=

1

1

1

α  является собственным вектором, соответствующим собственному 

числу 1
1
=λ . Следовательно, вектор-функция  
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является частным решением системы (10.35). 
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Наконец, найдем линейно независимые частные решения системы (10.35), 

соответствующие двукратному корню 2
2

−=λ , в следующем виде 
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.                                     (10.40) 

Подставляя (10.40) в (10.35), получим 
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Последняя система равносильна следующей: 
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Полагая в последней системе 0
111
=== CBA , получим  

)( 222 BAC +−= , где 
2

A  и 
2

B  - произвольные постоянные. 

Таким образом, учитывая в (10.40) 0
111
=== CBA  и )( 222 BAC +−= , 

получим 
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Полагая в (10.41) 0,1
22
== BA , получим частное решение  
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Наконец, положив в (10.41) 1,0
22
== BA , получим еще одно частное решение 

системы (10.35). 
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Таким образом, двукратному корню 2
2

−=λ  соответствуют два линейно 

независимых частных решения (10.42) и (10.43). 

Фундаментальной системой решений будет (10.39), (10.42), (10.43), а 
общее решение системы (10.35) можно задавать так: 
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где 
321

,, ccc  – произвольные постоянные.► 

 

II. КОНТРОЛЬНЫЕ ВОПРОСЫ И ЗАДАНИЯ 
 

1. Каков общий вид однородных систем n линейных дифференциальных 
уравнений 1-го порядка с постоянными коэффициентами?  

2. На каком интервале определены решения однородных систем n линейных 
дифференциальных уравнений 1-го порядка с постоянными 

коэффициентами?  

3. Запишите систему однородных систем n линейных дифференциальных 
уравнений 1-го порядка с постоянными коэффициентами в векторно-
матричной форме. 

4. Дайте определение фундаментальной системы частных решений для 
однородной системы линейных дифференциальных уравнений. 

5. Какая матрица называется фундаментальной матрицей для однородной 

системы дифференциальных уравнений? 

6. Какова структура общего решения однородной системы линейных 
дифференциальных уравнений? 

7. Как составляется характеристическое уравнение для однородной системы 

линейных дифференциальных уравнений с постоянными 

коэффициентами? 

8. Расскажите о методе Эйлера решения однородной системы линейных 
дифференциальных уравнений с постоянными коэффициентами. 

 

III. ПРИМЕРЫ И ЗАДАЧИ ДЛЯ АУДИТОРНОЙ РАБОТЫ 
 

10.1. Решите следующие системы дифференциальных уравнений: 
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10.2. Найдите решение системы  
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удовлетворяющее начальным условиям вида 0)0(,1)0( == zy . 

 

10.3. Найдите решение системы  
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удовлетворяющее начальным условиям вида 1)0(,0)0(,0)0( === zyx . 

 

IV. ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ 
 

10.4. Решите следующие системы линейных дифференциальных уравнений: 
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10.5. Найдите решение системы  
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удовлетворяющее начальным условиям вида 1)0(,0)0( −== zy . 

 

10.6. Найдите решение системы  
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удовлетворяющее начальным условиям вида 
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1
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Раздел 3 
 

Уравнения математической физики 

 

 

 

 

ЗАНЯТИЕ № 11 

 

Тема: Дифференциальное уравнение с частными производными. 

Предмет уравнений математической физики 

 
I. ОСНОВНЫЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ 

 

11.1. Дифференциальное уравнение с частными производными и 

понятие о его общем решении. Уравнение, связывающее неизвестную 

функцию от нескольких независимых переменных, независимые переменные и 

частные производные от неизвестной функции, называется дифференциальным 

уравнением с частными производными. При этом любое дифференциальное 
уравнение с частными производными обязательно должно содержать 
производные искомой функции. 

Всюду в дальнейшем через R
2

xy  будем обозначать евклидову плоскость 

,
2

R  на которой фиксирована прямоугольная система координат Oxy. Кроме того, 

в основном будем ограничиваться рассмотрением дифференциальных уравнений 

с частными производными, где искомая функция является функцией от двух 
независимых переменных, например, ),( yxUU = . 

В общем случае дифференциальное уравнение относительно функции 

),( yxUU =  можно записать в виде 
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где n – произвольное фиксированное натуральное число, а F – функция своих 
аргументов. 

Порядок старшей частной производной, входящей в дифференциальное 
уравнение, называется порядком данного уравнения. 

Например, дифференциальное уравнение вида 
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где ),( yxΦ  - искомая функция, является уравнением седьмого порядка. 

Из сказанного выше следует, что дифференциальное уравнение с 
частными производными 2-го порядка относительно неизвестной функции 

),( yxUU =  в общем виде можно записать так: 

                               ,0),,,,,,,(
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U
UyxF                        (11.2) 

 

где F – произвольная функция своих аргументов. 
Определение 11.1.  Пусть уравнение (11.1) имеет порядок m, где m – 

некоторое фиксированное натуральное число. Функция ),( yxU ϕ= , заданная в 

некоторой области G  плоскости R
2

xy , называется решением (или интегралом) 

дифференциального уравнения (11.1) в области G, если )(),( GCyx
m∈ϕ  (т.е. в 

области G  функция ),( yxU ϕ=  непрерывна вместе со своими частными 

производными до порядка m  включительно) и при подстановке в уравнение 
(11.1) последнее обращается в тождество на множестве G: 
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Например, нетрудно проверить, что функция 22

yxU −=  является решением 

дифференциального уравнения 
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x

U
 

во всей плоскости R
2

xy . 

Вообще процесс нахождения всех решений дифференциального уравнения 
с частными производными называется интегрированием этого уравнения. 

Как известно, для обыкновенного дифференциального уравнения n-го 
порядка относительно неизвестной функции )(xyy =  общее решение (т.е. 

множество всех решений, за исключением так называемых особых решений) 

можно задавать в виде функции  

)...,,,,(
21 n

CCCxy ϕ= , 

 

зависящей от независимой переменной x и от n  произвольных постоянных 

интегрирования 
n

CCC ...,,,
21

. 

В случае дифференциальных уравнений с частными производными дело 
обстоит намного сложнее. Чтобы убедиться в этом, достаточно рассмотреть 
следующий простой пример. 
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Пример 11.1. Интегрировать дифференциальное уравнение 
 

                                                  0

2

=
∂∂

∂

уx

U
.                                                   (11.3) 

 

РЕШЕНИЕ. Положим V
y

U
=

∂

∂ . Тогда уравнение (11.3) запишется в виде 

0=
∂

∂

x

V
. Последнее равенство означает, что V не зависит от x. Поэтому любое 

решение уравнения 0=
∂

∂

x

V
 можно задавать так: )(

1
yhV = , где )(

1
yh  – 

произвольная функция от y. Следовательно, будем иметь: )(
1

yh
y

U
=

∂

∂
. 

Интегрируя последнее дифференциальное уравнение, получаем: 

),()( xgyhU +=  где ∫= dyyhyh )()( 1  и )(xg  – произвольные дважды 

дифференцируемые функции.◄ 

Таким образом, общее  решение, т.е. решение, из которого получается 
любое конкретное (частное) решение дифференциального уравнения (11.3) с 
частными производными 2-го порядка, зависит от двух произвольных  функций 

)(xg  и ).(yh  

Как правило, общее решение дифференциального уравнения с частными 

производными зависит от произвольных функций, число которых равно порядку 

этого уравнения (более подробно об этом см., например, в [21], с. 337). 
 

Пример 11.2. Проверить, является ли функция )(ln 2
yxU +=ω , где ω  – 

произвольная дифференцируемая функция, общим решением 

дифференциального уравнения  
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в полуплоскости { }+∞<<∞−+∞<<=+ yxyx ,0),(2
R . 

РЕШЕНИЕ. Данная функция )(ln 2
yxU += ω  является сложной функцией 

вида ],)([ yx,zU ω=  где 2ln),( yxyxz += . Следовательно, применяя правила 

дифференцирования сложной функции, имеем: 
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Подставляя в уравнение (10.4) найденные значения частных производных, 
получаем тождество 
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022 ≡
∂

∂
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∂

∂

z
y

z
y

ωω
, 

 

справедливое во всей полуплоскости 2

+R . Значит, функция )(ln 2
yxU += ω , где   

ω  – произвольная дифференцируемая функция, является общим решением 

дифференциального уравнения (11.4) в полуплоскости 2

+R .◄ 
 

Очень часто проблемы, возникающие в различных областях науки и 

техники, изучаются с помощью описания основных свойств рассматриваемой 

проблемы (т.е. построения ее математической модели) в виде одного или 

нескольких дифференциальных уравнений. 

Исторически большинство математических моделей, в основе которых 
лежат дифференциальные уравнения с частными производными, были 

построены для решения задач, описывающих физические процессы в 
гидродинамике, аэромеханике и электродинамике. Поэтому раздел 

математики, предметом которого является изучение математических моделей 

физических явлений на основе теории дифференциальных уравнений с частными 

производными, получил название уравнения математической физики или 

просто математическая физика. 
В настоящее время методы математической физики также широко 

используются для моделирования процессов, возникающих, например, в химии, 

биологии, экономике и многих других областях науки. 
 

11.2. Квазилинейные и линейные дифференциальные уравнения с 
частными производными 2-го порядка и их классификация. Наиболее часто 
в математической физике встречаются так называемые квазилинейные и 

линейные дифференциальные уравнения 2-го порядка. 

Определение 11.2. Дифференциальное уравнение (10.2) называется 
квазилинейным, если оно линейно относительно старших производных, т.е. если 

оно имеет вид:  

       ,0),,,,(),(),(2),( 12

2

22

2

122

2

11 =
∂

∂

∂

∂
+

∂

∂
+

∂∂

∂
+

∂

∂

y

U

x

U
UyxF

y

U
yxa

yx

U
yxa

x

U
yxa        (11.5) 

 

где ),(),,(),,( 221211 yxayxayxa  – некоторые заданные функции, называемые 

коэффициентами квазилинейного уравнения (11.5), а 
1

F  - функция своих 

аргументов. 
Определение 11.3. Дифференциальное уравнение (10.2) называется 

линейным, если оно линейно относительно искомой функции и всех ее частных 
производных. 
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В общем случае линейное уравнение 2-го порядка относительно 
неизвестной функции ),( yxUU =  можно записать так: 
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где ,,, 221211 aaa fcbb ,,,
21

 – некоторые функции независимых переменных x и y. 

Обычно функции ,,, 221211 aaa cbb ,,
21

 называются коэффициентами линейного 

уравнения (11.6), а ),( yxf  – правой частью, или свободным членом, этого 

уравнения. 
Если в линейном уравнении (11.6) имеем 0),( ≡yxf , то это уравнение 

называется однородным, в противном случае оно называется неоднородным. 

Ясно, что всякое линейное уравнение является и квазилинейным, т.е. 
линейные дифференциальные уравнения вида (11.6) образуют подмножество 
множества всех квазилинейных уравнений вида (11.5). 

В математической физике выделяются три типа квазилинейных 
(линейных) дифференциальных уравнений 2-го порядка в зависимости от 
значений так называемого дискриминанта этих уравнений, т.е. функции вида 

 

                              ),(),()],([),( 2211

2

12 yxayxayxayxD −= .                         (11.7) 

 

Определение 11.4. Дифференциальное уравнение (11.5) (или (11.6)) 

называется уравнением гиперболического типа в точке ),(
000

yxM , если 

0),(
00
>yxD . Уравнение (11.5) (или (11.6)) называется уравнением 

параболического типа в точке ),(
000

yxM , если 0),(
00
=yxD . Наконец, 

уравнение (11.5) (или (11.6)) называется уравнением эллиптического типа в 

точке ),(
000

yxM , если 0),(
00
<yxD . 

Если же условие 0),( >yxD  выполняется во всех точках некоторого 

множества G  плоскости 2

xyR , то уравнение (11.5) (или (11.6)) называется 

уравнением гиперболического типа на множестве G. 

Аналогично определяются уравнения параболического типа и 

эллиптического типа на множестве G. 

В качестве примеров укажем наиболее часто встречающиеся в 
математической физике три простейших дифференциальных уравнения: 
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где a и c – отличные от нуля  постоянные.  

Легко проверить, что во всей плоскости 2

xyR  уравнение (11.8) является 

уравнением гиперболического типа; уравнение (11.9) – уравнением 

параболического типа; уравнение (11.10) – уравнением эллиптического типа. 

Как будет показано в дальнейшем, принадлежность уравнения в некоторой 

области G к одному из указанных выше типов определяет в этой области общие 
свойства решений этого уравнения и позволяет выбрать методы решения 
различных задач для такого уравнения. 

Важно отметить, что одно и то же дифференциальное уравнение на одном 

множестве G1 может быть уравнением одного типа, а на другом множестве G2  – 

совершенно другого типа. Например, уравнение  
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в полуплоскости 0>y  является уравнением эллиптического типа, в 

полуплоскости 0<y  оно уже является уравнением гиперболического типа, а в 

точках прямой 0=y  – уравнением параболического типа.  

 

 

II. КОНТРОЛЬНЫЕ ВОПРОСЫ И ЗАДАНИЯ 

 

1. Какое уравнение называется дифференциальным уравнением с частными 

производными? 

2. Каков общий вид дифференциального уравнения с частными производными 

2-го порядка относительно искомой функции ),( yxUZ =  ? 

3. Дайте определение решения дифференциального уравнения с частными 

производными. 

4. Опишите понятие общего решения дифференциального уравнения с 
частными производными. 

5. Что является предметом уравнений математической физики ? 

6. Когда дифференциальное уравнение с частными производными называется 
квазилинейным (линейным) ?  
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7. Каков общий вид квазилинейного (линейного) дифференциального 
уравнения 2-го порядка относительно искомой функции ),( yxUZ =  ? 

8. Дайте определение линейного однородного дифференциального уравнения с 
частными производными 2-го порядка. Приведите конкретные примеры таких 
уравнений. 

9. Что называется дискриминантом квазилинейного (линейного) 
дифференциального уравнения 2-го порядка ? 

10. Когда квазилинейное (линейное) дифференциальное уравнение 2-го порядка 
называется уравнением гиперболического (параболического, эллиптического) 

типа в некоторой области ? 

11. Приведите пример дифференциального уравнения, который в полуплоскости 

0>x  является уравнением гиперболического типа, а в полуплоскости 0<x  – 

уравнением эллиптического типа. 
 

 

III. ПРИМЕРЫ И ЗАДАЧИ ДЛЯ АУДИТОРНОЙ РАБОТЫ 

 

11.1. Проверьте, является ли функция ),(),( 22
yxyxu +=ϕ  где ϕ  – произвольная 

дифференцируемая функция, общим решением уравнения 
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11.2. Найдите решение уравнения 2
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11.3. Найдите общие решения уравнений: а) 0
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11.4. Пусть дано квазилинейное уравнение 2-го порядка  
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Выясните, к какому виду приводится данное уравнение с помощью замены 

переменных:
⎩
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11.5. Найдите области (множества) гиперболичности, параболичности и 

эллиптичности для следующего уравнения: 
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IV. ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ 

 

11.6. Проверьте, является ли функция )),()()(exp( 22
yxyx ψϕ ++  где )(),( yx ψϕ  – 

произвольные дважды дифференцируемые функции, решением уравнения  
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11.7. Найдите решение уравнения xyyx
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11.8. Найдите общее решение уравнения  xyyx
yx

yxu
−+=

∂∂

∂ 22
2 ),(

. 

 

11.9. Пусть дано линейное уравнение 2-го порядка  
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Выясните, к какому виду приводится данное уравнение с помощью замены 

переменных:
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11.10. Найдите области (множества) гиперболичности, параболичности и 

эллиптичности для следующего уравнения: 
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ЗАНЯТИЕ № 12 
 

Тема: Канонические формы квазилинейных уравнений 

с частными производными 2-го порядка.  
Основные уравнения математической физики 

 

I. ОСНОВНЫЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ 

 

12.1. Приведение к каноническому виду квазилинейных 
дифференциальных уравнений 2-го порядка. Понятие характеристических 

кривых. Пусть Q – некоторое множество на плоскости 2

xy
R  и пусть система 

функций  
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                                             (12.1) 

взаимно однозначно отображает множество Q на множество Q΄ плоскости 
2

ξη
R  

(см. рис. 12.1)  

 

Рис. 12.1 

 

Если систему (12.1) разрешить относительно x и y, то получим систему 
функций 
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с помощью которой точки множества Q΄ преобразуются в точки множества Q. 

Определение 12.1. Отображение, задаваемое системой функций (12.1), 

называется непрерывно дифференцируемым в области21
 G, если каждая из 

функций системы (12.1) непрерывно дифференцируема в этой области (т.е. все 

                                                
21

 Здесь и далее под областью понимается всякое открытое и связное множество на R2
. 
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частные производные первого порядка функций ),( yxϕξ =  и yx,(ψη =  

непрерывны в G ). 

Например, отображение, задаваемое системой функций  

                                                           

⎪
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+=

),(
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1

)(
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1

yx

yx

η

ξ
                                                (12.3) 

является непрерывно дифференцируемым на всей плоскости 2

xy
R . 

Определение 12.2. Функциональный определитель вида 
 

                                      

y
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ψψ

ϕϕ

ηξ
                                 (12.4) 

 

называется  определителем Якоби
22

 или  якобианом системы функций 

),(),,( yxyx ψηϕξ == . 

Нетрудно проверить, что якобиан системы функций (12.3) равен 
2

1
−  во 

всех точках плоскости 2

xy
R . 

Справедливо следующее утверждение (см., например, [11], часть I, с. 561). 

Теорема 12.1  Если функции (12.1) непрерывно дифференцируемы в какой-

либо окрестности точки ),(
000

yxM  и якобиан 
),(

),(

yx∂

∂ ηξ
 отличен от нуля в этой 

точке, то функции (12.1) осуществляют непрерывно дифференцируемое и 

взаимно однозначное отображение некоторой окрестности 
0

Ω  точки 

),(
000

yxM  на некоторую окрестность  точки ),(
00

/

0
ηξM , где 

),(),,(
000000

yxyx ψηϕξ == , причем обратное отображение, задаваемое системой 

функций (12.2), также будет непрерывно дифференцируемым в 
/

0
Ω . 

Замечание 12.1. Важно также отметить, что если якобиан 
),(

),(

yx∂

∂ ηξ
 системы 

функций ),(),,( yxyx ψηϕξ ==  непрерывен в некоторой области G и 0
),(

),(
≠

∂

∂

yx

ηξ
 в 

G, то,  согласно известной теореме Коши о сохранении знака непрерывной 

функции, всюду в G имеем либо 0
),(

),(
>

∂

∂

yx

ηξ
, либо 0

),(

),(
<

∂

∂

yx

ηξ
. 

Пусть дано квазилинейное дифференциальное уравнение вида 
 

                                                
22

 Карл Густав Яков Якоби – немецкий математик (1804-1851). 

/

0
Ω
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Оказывается, с помощью специальной замены независимых переменных 
вида (12.1), где функции ),(),,( yxyx ψϕ  являются непрерывно 

дифференцируемыми в некоторой области G и имеют в ней отличный от нуля 

якобиан 
),(

),(

yx∂

∂ ηξ
, дифференциальное уравнение (12.5) можно привести к наиболее 

простому виду, который принято называть  канонической формой этого 
уравнения. При этом, как будет установлено ниже, выбор функций ),(),,( yxyx ψϕ  

связан с решениями (интегральными кривыми) следующего обыкновенного 
дифференциального уравнения: 
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yxa .                  (12.6) 

 

Обычно уравнение (12.6) называют уравнением характеристик для 
дифференциального уравнения (12.5), а интегралы (решения) уравнения (12.6) 

называют характеристическими кривыми или характеристиками 

дифференциального уравнения (12.5). 

Справедлива следующая простая 
Лемма 12.1. Если Cyx =),(ω , где C  – произвольная постоянная, есть общий 

интеграл дифференциального уравнения характеристик (12.6), то  функция 

),( yxz ω=  является решением следующего дифференциального уравнения с 

частными производными первого порядка: 
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Доказательство. В самом деле, пусть Cyx =),(ω  – общий интеграл 

уравнения характеристик (12.6). Тогда вдоль любой характеристической кривой 

)(xyy =  будем иметь: 
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yx
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dx
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ω

ω
−= .                                                  (12.8) 

Подставляя найденное по формуле (12.8) значение 
dx

dy  в (12.6), получаем 

тождество ( ) ( ) ,0),(),(),(),(),(2),(),(
2'

22
''

12

2'
11 ≡++ yxyxayxyxyxayxyxa yyxx ωωωω  т.е. 

функция ),( yxz ω=  действительно является решением уравнения (12.7). ◄ 
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Далее, произведя замену независимых переменных (12.1) с отличным от 

нуля якобианом 
),(

),(

yx∂

∂ ηξ
 в некоторой области 2

xy
G R⊆  (следовательно, 

допускающим обратное преобразование вида (12.2)), дифференциальное 
уравнение (12.5) в новых переменных примет вид: 
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где )],(),,([),( 11 ηξψηξϕηξ UUU == , 
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(здесь и далее, например, 
x
ξ  означает частную производную 

x∂

∂ξ ). 

Замечание 12.2. Отметим, что поскольку имеет место легко проверяемое 
равенство  
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и 0
),(

),(
≠

∂

∂

yx

ηξ
 в G, то рассматриваемое преобразование (12.1) независимых 

переменных  не меняет тип дифференциального уравнения. 
 

12.1.1. Пусть дифференциальное уравнение (12.5) в некоторой области 
2

xy
G R⊆  является уравнением гиперболического типа (т.е. =),( yxD  

0),(),()],([
2211

2

12
>−= yxayxayxa  во всех точках области G ). В этом случае 

уравнение характеристик (12.6) распадается на совокупность двух 
обыкновенных дифференциальных уравнений: 
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Предположим, что 
1

),( Cyxp =  и 
2

),( Cyxq = , где 
21

, CC  – произвольные 

постоянные, являются общими интегралами дифференциальных уравнений 

(12.12) и (12.13) соответственно. Тогда в силу леммы 12.1 при замене 
независимых переменных вида 
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yxp

η

ξ
                                               (12.14) 

 

дифференциальное уравнение (12.5) преобразуется в уравнение (12.9), где 
0

2211
≡≡ AA . 

Таким образом, при замене переменных (12.14) дифференциальное 

уравнение (12.5) гиперболического типа приводится к уравнению вида: 
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Обычно уравнение вида (12.15а) называется первой канонической формой 
квазилинейных дифференциальных уравнений гиперболического типа.  

Однако часто на практике используется иная каноническая форма для 
гиперболических уравнений. Чтобы получить эту форму, достаточно в 
уравнении (12.15а) сделать следующую замену переменных: 
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При такой замене переменных имеем: 
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Наконец, подставив в уравнение (11.15а) найденные значения 
ηξ ∂

∂

∂

∂ UU
,  и 

ηξ∂∂

∂ U
2

, окончательно получим: 
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Уравнение вида (12.15б) принято называть второй канонической формой 
квазилинейных уравнений гиперболического типа. 

 

Пример 12.1. Привести к каноническому виду уравнение 
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и найти его общее решение. 
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РЕШЕНИЕ. Определим сначала тип данного уравнения. Поскольку в 

данном случае 0)1(),( 22
>+= yyxD   во всех точках плоскости 2

xy
R , то (12.16) 

является уравнением гиперболического типа в 2

xy
R . 

Уравнение характеристик для (12.16) имеет вид: 
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⎛
y
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. 

Но последнее дифференциальное уравнение равносильно совокупности 

следующих двух уравнений: 
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Общие интегралы дифференциальных уравнений (12.17) и (12.18) можно 
задавать соответственно в виде 

21
CarctgyxиCarctgyx =−=+ , где 

21, CC  – 

произвольные постоянные. Следовательно, для приведения уравнения (12.16) к 
канонической форме нужно произвести следующую замену переменных: 
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Нетрудно проверить, что при замене переменных (12.19) 

дифференциальное уравнение (12.16) примет вид: 

0

2

=
∂∂

∂

ηξ

U
. 

 

Как видно из примера 11.1, общее решение последнего уравнения задается 
в виде )()( ηξ hgU += , где )(ξg  и )(ηh  – произвольные дважды 

дифференцируемые функции. Тогда с учетом формул (12.19) общее решение 
исходного уравнения (12.16) можно задавать так: 

 

)()(),( arctgyxharctgyxgyxU −++= , 
 

где g  и h  – произвольные дважды дифференцируемые функции. ◄ 
 

12.1.2. Пусть дано дифференциальное уравнение вида (12.5), которое в 

области 2

xy
G R⊆  является уравнением параболического типа (т.е. =),( yxD  

0),(),()],([
2211

2

12
=−= yxayxayxa  во всех точках области G ). В этом случае 

уравнение характеристик (12.6) равносильно следующему дифференциальному 
уравнению: 
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Предположим, что Cyxp =),(
1

, где C  – произвольная постоянная, есть 

общий интеграл дифференциального уравнения (12.20), а ),(
1

yxq  – 

произвольная функция23
, дважды дифференцируемая и линейно независимая по 

отношению к функции ),(
1

yxp . Тогда в силу леммы 12.1 после замены 

переменных вида  
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данное дифференциальное уравнение (12.5) приводится к уравнению (12.9), где 
0

11
≡A . Но в силу параболичности исходного уравнения (12.5) и соотношения 

(12.11) имеем: 0
2211

2

12
=− AAA . Отсюда видно, что из тождества 0

11
≡A , в свою 

очередь, следует тождество 0
12
≡A . Следовательно, в данном случае уравнение 

(12.9) будет иметь вид: 
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Уравнение вида (12.21) называется  канонической формой квазилинейных 
дифференциальных уравнений 2-го порядка параболического типа.  

 

Пример 12.2. Привести к каноническому виду уравнение 
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и найти его общее решение. 

РЕШЕНИЕ. Так как в данном случае 0)(),( 222
≡−= yxxyyxD  во всех 

точках плоскости 2

xy
R , то (12.22) является уравнением параболического типа. 

Уравнение характеристик для (12.22) имеет вид: 
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Общий интеграл последнего уравнения можно задавать так: Cxy = , где       

C – произвольная постоянная. Следовательно, для приведения (12.22) к 
каноническому виду здесь можно использовать, например, следующую замену 
переменных: 

                                                
23

 На практике в качестве ),(1 yxq  выбирают функцию, которая является наиболее простой и линейно 

независимой по отношению к известной функции ),(1 yxp . 
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Произведя замену переменных (12.23), будем иметь: 
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Подставив найденные значения частных производных в (12.22), получим 

каноническую форму данного уравнения: 0
2
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=
∂
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U
. Проинтегрировав пос-леднее 

уравнение, найдем его общее решение в виде )()( 11 ξηξ hgU += , где )(
1
ξg  и       

)(
1
ξh  – произвольные дважды дифференцируемые функции. Тогда с учетом 

(12.23) общее решение дифференциального уравнения (12.22) задается так: 
)()( 11 xyhyxygU += .◄ 

 

12.1.3. Пусть дифференциальное уравнение (12.5) в некоторой области 
2

xy
G R⊆  является уравнением эллиптического типа (т.е. =),( yxD  

0),(),()],([
2211

2

12
<−= yxayxayxa  во всех точках области G ). В этом случае 

уравнение характеристик (12.6) распадается на совокупность двух 
обыкновенных дифференциальных уравнений следующего вида: 
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,
)],([),(),(

11

2

122211

11

12

11

2

122211

11

12

a
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a
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dx
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a

yxayxayxa
i

a

a

dx

dy

 

 

Предположим, что комплексный общий интеграл дифференциального 
уравнения (12.24) имеет вид: 

1),(),( Cyxiyx =+ µλ , где 
1

C  – произвольная 

постоянная, причем здесь ),( yxλ и ),( yxµ  являются действительными 

функциями своих аргументов. Тогда 
2),(),( Cyxiyx =− µλ , где 

2
C  – произвольная 

постоянная, будет общим интегралом дифференциального уравнения (12.25). В 

этом случае с помощью замены независимых переменных вида 
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⎩
⎨
⎧

=

=

),(

),(

yx

yx

µη

λξ
                                                   (12.26) 

 

получаем уравнение (12.9), где 
2211

AA ≡  и 0
12
≡A . 

В самом деле, в силу леммы 12.1 функция ),(),( yxiyxz µλ +=  является 

решением дифференциального уравнения (12.7), т.е.  
 

0))(,())()(,(2))(,( 2

2212

2

11 ≡++++++
yyyyxxxx

iyxaiiyxaiyxa µλµλµλµλ . (12.27) 
 

Выделяя действительные и мнимые части из последнего тождества, в свою 

очередь, получим следующие два тождества: 
 

         0))(,())(,(2))(,( 22

2212

22

11 ≡−+−+−
yyyxyxxx

yxayxayxa µλµµλλµλ ,        (12.28) 

 

                 0),())(,(2),( 221211 ≡+++
yyyxyxxx

yxayxayxa µλλµµλµλ .                (12.29) 
 

Но тождество (12.28) равносильно 
2211

AA ≡ , а (12.29) есть развернутая запись 

условия 0
12
≡A . 

Таким образом, после замены переменных (12.26) уравнение (12.9) 

приводится к виду: 

                              ),,,,(32

2

2

2

ηξ
ηξ

ηξ ∂

∂

∂

∂
Φ=

∂

∂
+

∂

∂ UU
U

UU
.                            (12.30) 

 

Уравнение вида (12.30) называется  канонической формой квазилинейных 
дифференциальных уравнений 2-го порядка эллиптического типа.  

 

Пример 12.3. Привести к каноническому виду уравнение 
 

                                          054
2

22

2

2

=
∂

∂
+

∂∂

∂
−

∂

∂

y

U

yx

U

x

U
.                                    (12.31) 

 

РЕШЕНИЕ. Так как в данном случае 015)2(),( 2
<−=−−=yxD  во всех 

точках плоскости 2

xy
R , то уравнение (12.31) на всей плоскости 2

xy
R  является 

уравнением эллиптического типа. Чтобы привести (12.31) к каноническому 
виду, запишем уравнение характеристик: 

054

2

=+⎟
⎠

⎞
⎜
⎝

⎛
+⎟

⎠

⎞
⎜
⎝

⎛

dx

dy

dx

dy
. 

 

Последнее уравнение равносильно совокупности следующих двух 

уравнений: i
dx

dy
+−= 2  и i

dx

dy
−−= 2 . Общий интеграл первого из этих уравнений 
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можно задавать так: 
1

)2( Cixyx =−+ , где 
1

C  – произвольная постоянная. 

Следовательно, произведя замену независимых переменных по формулам 
 

⎩
⎨
⎧

−=

+=

,

2

x

yx

η

ξ
 

 

нетрудно убедиться, что уравнение (12.31) приводится к виду 0
2

2

2

2

=
∂

∂
+

∂

∂

ηξ

UU
.◄ 

 

12.2. Основные уравнения математической физики. Как уже было 
отмечено в пункте 11.1, при изучении большинства физических и иных 
процессов и явлений приходится сталкиваться с тем, что исследуемые свойства 
объекта описываются функциями нескольких переменных величин. В таких 
случаях при составлении математических моделей, как правило, возникают те 
или иные дифференциальные уравнения с частными производными (уравнения 
математической физики). Кроме того, уравнения математической физики в 
основном описывают физические процессы, происходящие в сплошной 
(непрерывной) среде. При этом основные локальные характеристики физической 

среды (температура, давление, перемещения точек и т.д.) рассматриваются как 
неизвестные функции U от времени t и координат точек среды ),,( zyxM , т.е. 

),( MtUU =  или ),,,( zyxtUU = . 

В зависимости от того, зависят ли искомые локальные характеристики от 
времени или нет, различают эволюционные уравнения (в которых неизвестная 
функция ),,,( zyxtUU = ) и уравнения стационарного состояния (где 

),,( zyxUU = ). Кроме того, в соответствии с размерностью среды, в которой 

происходит физический процесс, различают одномерные, двумерные и 
трехмерные уравнения математической физики.  

Приведем несколько классических примеров уравнений математической 

физики. 

При изучении различных видов волн (упругих, звуковых, 
электромагнитных), а также других колебательных явлений часто приходим к 
так называемому трехмерному волновому уравнению: 
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U
,                            (12.32) 

 

где ),( MtUU =  или ),,,( zyxtUU =  – искомая функция, a  – некоторая 

действительная постоянная. В частности, если изучаемая среда является 
одномерной (т.е. точки )(xM  – одномерные), то вместо (12.32) получаем 

одномерное волновое уравнение: 



159 

 

                                                        
2

2

2

2

2

x

U
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t

U

∂

∂
=

∂

∂
.                                         (12.32а) 

 

Из курса физики известно, что процессы распространения тепла в 
однородной (т.е. одинаковой во всех точках) и изотропной (т.е. одинаковой во 
всех направлениях) среде, а также диффузионные процессы описываются так 
называемым трехмерным уравнением теплопроводности: 
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где ),( MtUU =  или ),,,( zyxtUU =  - неизвестная функция, c  – некоторая 

действительная постоянная. Ясно, что одномерное уравнение теплопроводности 
будет иметь вид: 

                                                      
2

2

2

x

U
c

t

U

∂

∂
=

∂

∂
.                                            (12.33а) 

 

Наконец, при изучении пространственных стационарных тепловых полей, 

а также при описании некоторых электростатических полей и магнитных полей 

постоянных токов приходим к так называемому трехмерному уравнению 

Пуассона: 

                                   ),,(
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2

2

2

2

2

zyxf
z

U

y

U

x

U
=

∂
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,                            (12.34) 

 

где )(MUU =  или ),,( zyxUU =  – искомая функция, а ),,( zyxf  – заданная 

функция, называемая функцией источника тепла. Если же в изучаемой среде 
источники тепла отсутствуют, то уравнение (12.34) переходит в трехмерное 
уравнение Лапласа: 

                                        0
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Если же изучаемые поля являются плоскими, то вместо (12.34) и (12.35) 

получаются соответственно двумерные уравнения Пуассона и Лапласа: 
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Часто приведенные выше уравнения (12.32)-(12.36) называются 
основными уравнениями математической физики, так как изучение этих 
уравнений позволяет построить теорию широкого круга физических явлений и 

решить ряд физических и технических задач. 
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Отметим, что каждое из основных уравнений математической физики 

имеет, вообще говоря, бесчисленное множество (частных) решений. Но при 

изучении конкретной физической проблемы необходимо из всевозможных 
решений данного дифференциального уравнения выбрать то, которое 
удовлетворяет некоторым дополнительным условиям. Очень часто в качестве 
таких дополнительных условий рассматриваются так называемые краевые 
(граничные) и начальные условия задачи. 

В случае, когда граница изучаемой среды может оказать существенное 
влияние на интересующие нас значения локальных характеристик (искомых 
функций), то должны быть указаны краевые (граничные) условия, описывающие 
локальные характеристики в точках границы рассматриваемой среды. Кроме 
того, в случае эволюционных уравнений  задаются еще начальные условия, 
описывающие значения локальных характеристик в некоторый начальный 

момент времени. 

Обычно в курсе уравнений математической физики для уравнений вида 
(12.34)-(12.36), описывающих стационарные процессы, задаются краевые 
(граничные) условия, т.е. ставятся краевые задачи. Если же изучаются 
эволюционные уравнения вида (12.32)-(12.33а), то ставится либо начальная 
задача (задача Коши), т.е. когда кроме дифференциального уравнения задаются 
еще и начальные условия, либо начально-краевая задача, когда наряду с 
дифференциальным уравнением задаются и начальные условия, и краевые 
условия.  
 

II. КОНТРОЛЬНЫЕ ВОПРОСЫ И ЗАДАНИЯ 
 

1. Когда отображение, задаваемое системой функций 
⎩
⎨
⎧

=

=

),(

),(

yx

yx

ψη

ϕξ
, называется 

непрерывно дифференцируемым в области G ? Приведите конкретный 

пример непрерывно дифференцируемого отображения в полуплоскости 

}0,),{( 2

1
>∈∈= yRxyxG R . 

2. Дайте определение якобиана системы функций 
⎩
⎨
⎧

=

=

),(

),(

yx

yx

ψη

ϕξ
. 

3. Что называется уравнением характеристик для квазилинейного 
дифференциального уравнения 2-го порядка ?  

4. Как определяется замена переменных при сведении квазилинейного 
дифференциального уравнения 2-го порядка гиперболического 

(параболического, эллиптического) типа к канонической форме ? 

5. Какова каноническая форма квазилинейного уравнения 2-го порядка 
гиперболического (параболического, эллиптического) типа ?  
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6. Какие дифференциальные уравнения называются основными уравнениями 
математической физики ? 

7. Как определяются начальные и краевые (граничные) условия для основных 
уравнений математической физики ? 

 

 

III. ПРИМЕРЫ И ЗАДАЧИ ДЛЯ АУДИТОРНОЙ РАБОТЫ 
 

12.1. Найдите общие решения следующих дифференциальных уравнений: 
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12.2. Следующие уравнения приведите к канонической форме в каждой из 
областей, где сохраняется тип рассматриваемого уравнения: 
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IV. ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ 
 

12.3. Приведите к канонической форме дифференциальные уравнения: 
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12.4. Следующие уравнения приведите к канонической форме в каждой из 
областей, где сохраняется тип рассматриваемого уравнения: 
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ЗАНЯТИЕ № 13 
 

Тема: Однородное волновое уравнение на конечном интервале  
и на прямой 

 

I. ОСНОВНЫЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ 
 

       13.1. Задача о свободных колебаниях конечной струны. Метод Фурье 
 

Рассмотрим следующую физическую задачу. Имеем натянутую 

однородную струну конечной длины l и постоянного поперечного сечения, 
закрепленную на концах. Под струной понимаем тонкую нить, которая может 
свободно изгибаться, т.е. не оказывает сопротивления изменению ее формы, не 
связанному с изменением ее длины. Сила натяжения T0, действующая на струну, 
предполагается значительной, так что 
можно пренебречь силой тяжести. 

Следовательно, можно считать, что в 
положении равновесия струна 
направлена по оси ОХ и занимает отрезок 
[0, l] на этой оси (см. рис. 13.1). Ясно, что 
если струну отклонить, то она будет 
совершать колебания около положения равновесия. Будем рассматривать только 
поперечные колебания, т.е. колебания, которые происходят в плоскости XOY. 

Обозначим через ( , )u t x  смещение точек струны в момент времени t от положения 

равновесия. Тогда при каждом фиксированном значении t график функции ( , )u t x  

дает форму струны в этот момент времени (см. рис. 13.1). Рассматривая 
достаточно малые колебания струны, можно показать (см., например, [12], с. 21), 

что функция ( , )u t x  должна удовлетворять следующему дифференциальному 

уравнению: 

                                                          
2 2

2

2 2

u u
a

t x

∂ ∂
=

∂ ∂
,                                                (13.1) 

где 
ρ
0

T
a = , ρ  – линейная плотность однородной струны, а T0 – сила натяжения, 

действующая на струну. 
Уравнение (13.1) будем называть в дальнейшем уравнением свободных 

колебаний струны или однородным волновым уравнением. 

Как уже было отмечено в пункте 12.2, уравнение (13.1) имеет бесконечное 
множество частных решений. Поэтому для полного описания движения струны, 

кроме самого уравнения (13.1), нужны еще некоторые дополнительные условия, 
вытекающие из физического смысла задачи. 

О 

Y 

X  х  l 

u(t, x) 

Рис. 13.1 
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Так, в начальный момент времени 0t =  нужно задать положение и скорость 

всех точек струны: 

                         )(0 xfu t ==
,  )(0 xF

t

u

t
=

∂

∂
= ,  lx ≤≤0 ,                          (13.2) 

 

где ( )f x  и ( )F x  – заданные функции на [0, ]l , причем 0)()0( == lff . Условия 

(13.2) называются начальными условиями. 
Кроме того, так как струна закреплена на концах, то должны выполняться 

условия 
                                       0

0
==x

u ,    0==lx
u                                            (13.3) 

 

при всех 0t ≥ . Условия (13.3) называют краевыми или граничными условиями. 

Таким образом, физическая задача о колебаниях струны свелась к 
следующей математической задаче: требуется найти решения 
дифференциального уравнения (13.1), которые удовлетворяли бы начальным 

условиям (13.2) и граничным условиям (13.3). 

В дальнейшем эту задачу ради краткости назовем задачей о свободном 

колебании конечной струны или задачей (13.1)-(13.3). 

В настоящее время известны (см., например, [2], [17], [22]) различные 
методы решения задачи (13.1)-(13.3). Ниже излагается один из наиболее 
распространенных методов решения этой задачи, который принято называть 
методом Фурье или методом разделения переменных. 

Будем искать частные решения уравнения (13.1), не равные тождественно 
нулю, в виде произведения 

 

                                       )()(),( tTxXxtu ⋅= ,                                          (13.4) 
 

где функция )(xXX =  зависит только от переменной х, а вторая функция 

)(tTT =  зависит только от переменной t. Подставляя функцию (13.4) в уравнение 

(13.1), получим 

)()('')('')( 2
tTxXatTxX ⋅=⋅  

или 

                                                     
)(

)(''

)(

)(''
2

xX

xX

tTa

tT
= .                                           (13.5) 

 

Равенство (13.5) должно выполняться тождественно при всех 0t ≥  и 

[0, ]x l∈ . Но это возможно лишь тогда, когда правая и левая части равенства 

(13.5) представляют собой одну и ту же постоянную. Обозначим эту постоянную 

через λ− . Тогда из (13.5) получим два обыкновенных линейных 

дифференциальных уравнения второго порядка с постоянными 

коэффициентами: 
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                                          0)()( 2"
=+ tTatT λ ,                                        (13.6) 

 

                                         0)()('' =+ xXxX λ .                                         (13.7) 
 

Рассмотрим сначала уравнение (13.7). Здесь нужно найти ненулевые 

решения уравнения (13.7), удовлетворяющие граничным условиям (13.3), 

которые в новых обозначениях имеют вид: 
 

                                       0)(,0)0( == lXX .                                         (13.8) 
 

Далее выясним, при каких значениях параметра λ  задача (13.7)-(13.8) 

может иметь ненулевые решения24. 
 

Определение 13.1. Значения параметра λ , при которых задача               
(13.7)-(13.8) имеет ненулевые решения, называются собственными числами, а 
сами эти решения называются собственными функциями задачи (13.7)-(13.8). 

Итак, будем находить собственные числа и собственные функции задачи 

(13.7)-(13.8). 

Далее рассмотрим три случая: 0<λ , 0=λ  и 0>λ . 

1) Пусть 0<λ . Тогда общее решение дифференциального уравнения (12.7) 

имеет вид: 

                                  
1 2( ) x x

X x C e C e
λ λ− ⋅ − − ⋅

= + ,                                        (13.9) 
 

где 
1 2
,C C  – произвольные постоянные. Потребовав от функций вида (13.9), 

чтобы они удовлетворяли граничным условиям (13.8), получим систему 
уравнений: 

⎪⎩

⎪
⎨
⎧

=+

=+

⋅−−⋅−
.0

0

21

21

ll
eCeC

CC

λλ
 

 

Но последняя система имеет лишь нулевое решение, т.е. 0
21
==CC . 

Следовательно, в этом случае 0)( ≡xX . 

2) Пусть 0=λ . Тогда общее решение уравнения (13.7) имеет вид: 

1 2( )X x C C x= + , где 
1 2
,C C  – произвольные постоянные. Потребовав, чтобы эта 

функция удовлетворяла граничным условиям (13.8), будем иметь: 
 

⎩
⎨
⎧

=⋅+

=⋅+

.0

00

21

21

lCC

CC
 

 

Отсюда следует, что 0
21
==CC . Следовательно, и здесь имеем: 0)( ≡xX . 

3) Пусть 0>λ . В этом случае общее решение уравнения (13.7) имеет вид: 
 

                              
1 2( ) cos( ) sin( )X x C x C xλ λ= ⋅ + ⋅ ,                          (13.10) 

                                                
24

 Обычно задачу (13.7)-(13.8) называют задачей Штурма-Лиувилля. 
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где 
1 2
,C C  – произвольные постоянные. 

Потребовав от функций вида (13.10), чтобы они удовлетворяли граничным 

условиям (13.8), получим 

⎩
⎨
⎧

=⋅

=

.0)sin(

0

2

1

lC

C

λ
 

 

Так как 
2

0C ≠  (иначе 0)( ≡xX ), то из последней системы вытекает, что должно 

выполняться равенство: 

sin( ) 0lλ ⋅ = , 

т.е. l kλ π⋅ = , или ...,2,1,

2

=⎟
⎠

⎞
⎜
⎝

⎛
= k

l

kπ
λ . 

Итак, собственными числами задачи (13.7)-(13.8) являются лишь числа 
вида 

                                           
2

, 1, 2, 3,...
k

k
k

l

π
λ

⎛ ⎞
= =⎜ ⎟
⎝ ⎠

                                          (13.11) 

 

Указанным собственным числам соответствуют собственные функции 
 

                                   ( ) sin
k

k x
X x

l

π
= ,                                                 (13.12) 

 

определяемые с точностью до постоянного множителя, который положим 

равным 1, т.е. 
2

1C = . 

Замечание 13.1. Из (13.12) видно, что положительные и отрицательные 
значения параметра k, равные по абсолютной величине, дают собственные 
функции, отличающиеся лишь постоянным множителем, так как 

sin sin
k x k x

l l

π π−⎛ ⎞ ⎛ ⎞
= −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
. Поэтому здесь достаточно, чтобы параметр k принимал 

лишь положительные значения (т.е. k N∈ ). 

Рассмотрим теперь дифференциальное уравнение (13.6). Заменив в нем λ  

на 
2

k

k

l

π
λ

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

и обозначив искомую функцию через ( )
k

T t , получим 

2

( ) ( ) 0
k k

ak
T t T t

l

π⎛ ⎞ʹ́ + =⎜ ⎟
⎝ ⎠

. 

 

Общее решение последнего уравнения имеет вид: 
 

                                    ( ) cos sin
k k k

ak ak
T t a t b t

l l

π π
= + ,                       (13.13) 

 

где 
k

a  и 
k

b  – произвольные постоянные. 
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Таким образом, функции вида 
 

    ( , ) ( ) ( ) cos sin sin
k k k k k

ak ak k x
u t x X x T t a t b t

l l l

π π π⎛ ⎞
= ⋅ = + ⋅⎜ ⎟

⎝ ⎠
,             (13.14) 

 

где 
k

a  и 
k

b  – произвольные постоянные, удовлетворяют дифференциальному 

уравнению (13.1) и граничным условиям (13.3). 

В силу линейности и однородности уравнения (13.1) очевидно, что всякая 
конечная сумма решений вида (13.14) также будет решением уравнения (13.1). 

То же самое справедливо и для суммы ряда 
 

          ∑
∞

=

⎟
⎠

⎞
⎜
⎝

⎛
+=

1

sinsincos),(
k

kk
l

xk

l

akt
b

l

akt
axtu

πππ
,                    (13.15) 

 

если этот ряд сходится и его можно дважды почленно дифференцировать по x  и 

t , причем ряды, получаемые в результате дифференцирования, равномерно 
сходятся при 0 x l≤ ≤  и 0t ≥  (достаточные для этого условия будут указаны 

ниже). Кроме того, поскольку каждый член ряда (13.15) удовлетворяет 
граничным условиям (13.3), то этим условиям будет удовлетворять и сумма ряда 

( , )u t x . 

Наконец, определим произвольные постоянные 
k

a  и 
k

b  так, чтобы функция 

( , )u t x , определяемая по формуле (13.15), удовлетворяла и заданным начальным 

условиям (13.2). Для этого потребуем, чтобы выполнялись равенства: 
 

                                           
0

1

sin ( )kt
k

k x
u a f x

l

π∞

=
=

= =∑ ,                                    (13.16) 

 

                                          )(sin
1

0

/
xF

l

xk
b

l

ka
u

k

ktt
==∑

∞

=

=

ππ
.                            (13.17) 

 

Но равенство (13.16) означает, что числа 
k

a  должны быть 

коэффициентами Фурье функции ( )f x  в ее разложении в ряд по синусам на 

интервале (0, )l , т.е. 

                              

0

2
( )sin , 1, 2, ...

l

k

k
a f d k

l l

πξ
ξ ξ= =∫                             (13.18) 

Аналогично равенство (13.17) означает, что числа 
k

b
l

ak
⋅

π
 должны быть 

коэффициентами Фурье функции ( )F x  в ее разложении в ряд Фурье по синусам, 

т.е. 

                                  ...,2,1,sin)(
2

0

== ∫ kd
l

k
F

ak
b

l

k
ξ

πξ
ξ

π
                            (13.19) 
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Подставляя в (13.15) вместо 
k

a  и 
k

b  их значения из (13.18) и (13.19), 

окончательно получим: 
 

l

xk
d

l

k
F

ak

l

l

akt
d

l

k
f

l

akt

l
xtu

k

ll π
ξ

πξ
ξ

π

π
ξ

πξ
ξ

π
sinsin)(sinsin)(cos

2
),(

1 00

∑ ∫∫
∞

=

⎥
⎦

⎤
⎢
⎣

⎡
⋅+⋅= . (13.20) 

 

Таким образом, решение поставленной выше задачи о свободных 

колебаниях конечной струны (задачи (13.1)-(13.3)) дается в виде суммы 

функционального ряда (13.20) при условии, что ряд (13.15) сходится и его можно 
дважды почленно дифференцировать по x и t, причем ряды, получаемые в 
результате дифференцирования, равномерно сходятся при 0 x l≤ ≤  и 0t ≥ . 

Следовательно, возникает естественный вопрос: какими должны быть 
заданные функции ( )f x  и ( )F x , чтобы все указанные выше условия 

относительно функционального ряда (13.20) выполнялись? Ответ на этот вопрос 
дает следующее утверждение (см., например, [19], с. 74). 

Теорема 13.1. Если ( )f x  на отрезке [0, ]l  дважды непрерывно-

дифференцируема, имеет кусочно-непрерывную третью производную и 

удовлетворяет условиям 

                               (0) ( ) 0, (0) ( ) 0f f l f f lʹ́ ʹ́= = = = ,                                  
 

а ( )F x  непрерывно-дифференцируема на [0, ]l , имеет там кусочно-непрерывную 

вторую производную и удовлетворяет условиям 
 

                                                       (0) ( ) 0F F l= = ,                                                 
 

то функция ( , )u t x , определенная функциональным рядом (13.20), будет 

решением задачи (13.1)-(13.3). При этом возможно почленное 

дифференцирование ряда (13.15) по x и t два раза и полученные ряды сходятся 

абсолютно и равномерно в области }0,0:),{( lxtxt ≤≤≥=Ω . 
 

Замечание 13.2. Важно отметить, что ограничения на функции )(xf  и )(xF

, указанные в условиях теоремы 13.1, достаточны и удобны для обоснования 
приведенного выше метода решения задачи (13.1)-(13.3). Но в то же время они 

являются слишком жесткими и не всегда выполняются. На самом деле можно 
показать (см., например, [22], с. 96), что для существования решения задачи 
(13.1)-(13.3) вида (13.20) достаточно потребовать, чтобы функция )(xf  на 

отрезке [0, ]l  была дважды непрерывно-дифференцируемой, а )(xF  - просто 

непрерывно-дифференцируемой на этом отрезке.  

Поэтому при решении задач вида (13.1)-(13.3) на практике обычно 
проверяется выполнение условий существования решений, указанных в 
замечании 13.2. 
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Пример 13.1. Найти закон колебания струны длиной l, расположенной на 
отрезке [0, ]l , если в начальный момент времени (t = 0) струне придана форма 

кривой 
l

xlx
u

8

)( −
= , а затем струна отпущена без начальной скорости. Струна 

закреплена на концах. Внешние силы отсутствуют. 
РЕШЕНИЕ. В данном случае требуется решить задачу (13.1)-(13.3) при 

условии, что 0)(,
8

)(
)( ≡

−
= xF

l

lxx
xf . 

Нетрудно проверить, что функции 
l

lxx
xf

8

)(
)(

−
=  и ( ) 0F x ≡  удовлетворяют 

всем условиям, указанным в замечании 13.2. Следовательно, решение данной 

задачи можно искать в виде (13.15), где 
k

a  и 
k

b  определяются по формулам 

(13.18) и (13.19) соответственно. В силу формулы (13.18) здесь будем иметь: 
 

∫∫∫ −=
−

=
lll

k
d

l

k

l
d

l

k

l
d

l

k

l

l

l
a

0

2

2

00

sin
4

1
sin

4

1
sin

8

)(2
ξ

πξ
ξξ

πξ
ξξ

πξξξ
. 

 

Вычисляя по частям интегралы, стоящие в левой части последнего 

равенства, получим: 
33)12( π−

=
k

l
a

k
. В свою очередь, в силу формулы (13.19) и 

0)( ≡xF  будем иметь: 0=
k

b . Следовательно, подставляя в (13.15) 

соответствующие значения 
k

a  и 
k

b , окончательно получим 
 

                          ∑
∞

=

⋅
−

=
1

33
sincos

)12(

11
),(

k l

xk

l

tka

k
xtu

ππ

π
. 

 

13.2. Задача Коши для однородного волнового уравнения на 
прямой. Рассмотрим теперь свободные колебания бесконечной струны (т.е. 

достаточно длинной струны, влиянием концов которой на процесс колебаний 

можно пренебречь). 
Причинами, вызывающими колебания бесконечной струны, могут 

являться начальные отклонения струны от равновесного положения или 

сообщенный струне начальный импульс, обуславливающий некоторое 
распределение скоростей частиц струны. Поэтому, описывая свободные 
колебания бесконечной струны, нужно решить однородное уравнение 
свободных колебаний  

                             0,,0
),(),(

2

2
2

2

2

>+∞<<∞−=
∂

∂
−

∂

∂
tx

x

xtu
a

t

xtu
         (13.21) 

при начальных условиях вида 
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                                      )(),( 00 x
t

u
xu

tt
ψϕ =

∂

∂
= == ,                               (13.22) 

 

где функции )(),( xx ψϕ  заданы на всей числовой прямой ),( ∞+−∞ . 

Обычно задачу (13.21)-(13.22) называют задачей Коши для однородного 
уравнения свободных колебаний струны или задачей Коши для однородного 

волнового уравнения. 

Для решения задачи Коши (13.21)-(13.22) сначала найдем общее решение 

уравнения (13.21), а затем из него выделим те решения, которые удовлетворяют 
начальным условиям (13.22). 

Но для нахождения общего решения уравнения (13.21) предварительно 
приведем его к каноническому виду. Заметим, что уравнение характеристик для 

(13.21) имеет вид: 0
2

2

=−⎟
⎠

⎞
⎜
⎝

⎛
a

dt

dx
. Последнее дифференциальное уравнение 

равносильно следующей совокупности уравнений: 

                                                   

⎢
⎢
⎢
⎢

⎣

⎡

−=

=

.

,

a
dt

dx

a
dt

dx

                                                  (13.23) 

Общие интегралы дифференциальных уравнений совокупности (13.23) 

можно задавать соответственно в виде 
1

Catx =−  и 
2

Catx =+ , где 
1 2
,C C  – 

произвольные постоянные. Следовательно, для приведения уравнения (13.21) к 
канонической форме произведем следующую замену переменных: 

 

                                                        
⎩
⎨
⎧

−=

+=

.atx

atx

η

ξ
                                                  (13.24) 

 

После замены переменных (13.24) уравнение (13.21) сводится к уравнению 

вида 0
),(2

=
∂∂

∂

ηξ

ηξu
. Интегрируя последнее уравнение, получим: 

 

                                               )()(),( 21 ηξηξ ffu += ,                                         (13.25) 
 

где )(),( 21 ηξ ff  – произвольные дважды дифференцируемые функции. 

Возвращаясь к переменным x и y, с учетом (13.24) и (13.25), получим 

общее решение уравнения (13.21) в виде: 
 

                                        )()(),( 21 atxfatxfxtu −++= .                                (13.26) 
 

Далее определим функции 
1

f  и 
2

f  так, чтобы выполнялись начальные 

условия (13.22), т.е. 
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21

xxxafxaf

xxfxf

ψ

ϕ
                     (13.27) 

 

Проинтегрировав второе уравнение системы (13.27), получим 
 

                                  Cdss
a

xfxf
x

x

+=− ∫
0

)(
1

)()(
21

ψ ,                                  (13.28) 

где x0 и C – постоянные. 
Таким образом, относительно 

1
f  и 

2
f  получили алгебраическую систему 

уравнений вида: 
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                              (13.29) 

 

Наконец, решив систему алгебраических уравнений (13.29), а затем, 

подставив найденные значения 
1

f  и 
2

f  в правую часть формулы (13.26), 

окончательно будем иметь: 

                      ∫
+

−

+
++−

=
atx

atx

dss
a

atxatx
xtu )(

2

1

2

)()(
),( ψ

ϕϕ
.                      (13.30) 

 

Итак, справедливо утверждение. 
Теорема 13.2. Если )(xϕ  дважды непрерывно-дифференцируема, а )(xψ  

просто непрерывно-дифференцируема на ),( ∞+−∞ , то задача Коши      (13.21)-

(13.22) имеет единственное решение, которое можно задавать формулой 

(13.30).  

Обычно формулу (13.30) называют формулой Даламбера для решения 
задачи Коши (13.21)-(13.22). 

Пример 13.2. Найти решение следующей задачи Коши: 
 

                              0,,0
),(

9
),(

2

2

2

2

>+∞<<∞−=
∂

∂
−

∂

∂
tx

x

xtu
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xtu
,         (13.31) 

                                        x
t

u
u

tt
=

∂

∂
= == 00 ,0 .                                        (13.32) 

РЕШЕНИЕ. Здесь xxxa =≡= )(,0)(,3 ψϕ . Очевидно, что все условия 

теоремы 13.2 выполняются. Поэтому решение данной задачи можно получить по 
формуле Даламбера (13.30), положив там xxxa =≡= )(,0)(,3 ψϕ . Сделав 

соответствующие выкладки, получим решение задачи (13.31)-(13.32) в виде: 

.),( txxtu =  ◄ 

13.3. Понятие корректности задач математической физики. Задачи 

математической физики делятся на две группы: 1) корректно поставленные;        
2) некорректно поставленные. 
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Для того чтобы определить понятие корректности постановки задач 
математической физики, заметим, что каждая такая задача содержит ряд 

величин, называемых исходными данными. Например, в задаче Коши            

(13.21)-(13.22) для свободных колебаний бесконечной струны в качестве 
исходных данных выступают функции )(),( xx ψϕ , участвующие в начальных 

условиях этой задачи. 

Определение 13.2. Решение задачи математической физики называется 
устойчивым, если для всякого действительного числа 0>ε  можно найти такое 

0>δ , что при изменении исходных данных задачи на величину, не 
превосходящую по абсолютной величине δ , решение получит в каждой точке 
рассматриваемой области и на ее границе приращение, не превосходящее по 
абсолютной величине ε . 

Определение 13.3. Говорят, что задача математической физики 

поставлена корректно в рассматриваемой области, если исходные данные 
задачи таковы, что ее решение существует, единственно и устойчиво. Задача 
математической физики, не удовлетворяющая хотя бы одному из трех 
перечисленных требований, называется некорректно поставленной. 

Например, задача Коши (13.21)-(13.22) для уравнения свободных 
колебаний бесконечной струны является корректно поставленной. В самом деле, 
из результатов предыдущего пункта видно, что задача (13.21)-(13.22) имеет, и 

притом единственное, решение, задаваемое формулой Даламбера (13.30). 

Покажем, что решение задачи Коши (13.21)-(13.22) является еще и 

устойчивым. Действительно, как видно из формулы Даламбера (13.30), если 
 

121 )()( δϕϕ <− xx  и 
221 )()( δψψ <− xx , то ε<− ),(),( 21 xtuxtu , причем 0→ε   при 

0
1
→δ  и 0

2
→δ . ◄ 

 

II. КОНТРОЛЬНЫЕ ВОПРОСЫ И ЗАДАНИЯ 
 

1. Сформулируйте задачу о колебаниях конечной струны. 

2. В чем состоит суть метода Фурье (метода разделения переменных) решения 
задачи о колебаниях конечной струны ? 

3. Какая задача называется задачей Штурма-Лиувилля ? 

4. Дайте определение собственных чисел (собственных функций) задачи 

Штурма-Лиувилля. 
5. Сформулируйте достаточные условия существования решения задачи о 
колебаниях конечной струны. 

6. Сформулируйте задачу Коши для однородного уравнения колебаний 

бесконечной струны. 

7. Какова каноническая форма уравнения колебания струны? 
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8. При каких условиях справедлива формула Даламбера для решений задачи 

Коши? 

9. Когда задача математической физики называется устойчивой? 

10.  Когда задача математической физики называется корректно (некорректно) 
поставленной? 

 

III. ПРИМЕРЫ И ЗАДАЧИ ДЛЯ АУДИТОРНОЙ РАБОТЫ 
 

13.1. Найдите закон колебания струны длиной l, расположенной на отрезке      

],0[ l , если в начальный момент струне придают форму x
l

Hxf
π2

sin)( = , где 

constH = , а затем ее отпускают без начальной скорости. Концы струны 

закреплены, внешние силы отсутствуют. 
 

13.2. В начальный момент времени 0=t  струне, концы которой закреплены в 
точках 0=x , lx = , сообщена начальная скорость 
 

                                       
⎪⎩

⎪
⎨
⎧

>−

<−
=

/22/при0

/2,2/при
)(

0

hlx

hlxv
xF  

 

( const,0 == hconstv ). Определите форму струны в любой момент времени 

t, если начальное отклонение отсутствует. 
 

13.3. Струна, концы которой закреплены в точках 0=x и 1=x , имеет в 

начальный момент форму )2()0,( 24
xxxHxu +−= , constH = . Найдите закон 

колебания струны, если начальная скорость отсутствует. 
 

13.4. Найдите решение уравнения  
2

2

2

2

x

u

t

u

∂

∂
=

∂

∂
, удовлетворяющее следующим 

начальным условиям: 0)0,(,sin)0,( '
== xuxxu

t
. 

 

13.5. Найдите решение уравнения  
2

2

2

2

9
x

u

t

u

∂

∂
=

∂

∂
, удовлетворяющее начальным 

условиям: 2' )0,(,0)0,( xxuxu
t

== . 

 

13.6. Найдите закон колебания бесконечной струны, определяемый уравнением 

2

2

2

2

2

x

u
a

t

u

∂

∂
=

∂

∂
, если начальное отклонение задано равенствами  
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⎪
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lxпри

xu  

где l – заданный отрезок. Начальная скорость и внешняя возмущающая сила 

равны нулю. Постройте профиль струны в момент времени 0=t  и 
a

l
t

2
= . 

 

IV. ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ 
 

13.7. Однородная струна, закрепленная в точках 0=x и lx = , имеет в начальный 

момент форму,  заданную функцией, определенной  на отрезке ],0[ l : 

                           
⎩
⎨
⎧

≤≤−

≤≤
=

lllxlh

llhx
xf

x4/при)3/()(4

/4,x0при/4
)(  

(здесь )consth = . Найти закон колебания струны, если начальная скорость 

отсутствует. 
 

13.8. Однородная струна закреплена в точках 0=x , lx = . Начальная скорость 
определяется формулой: 

                                 

⎪
⎪

⎩

⎪
⎪

⎨

⎧

>−

<−⎟
⎠

⎞
⎜
⎝

⎛
−

=

,
22

0

,
22

)
2

(cos

)(
hl

xпри

hl
xпри

l
x

h
xF

π

 

где consth = . Найдите закон колебания струны, если начальные отклонения 
ее точек отсутствуют. 
 

13.9. Найдите решение уравнения 
2

2

2

2

2

x

u
a

t

u

∂

∂
=

∂

∂
, удовлетворяющее следующим 

начальным условиям: 0)0,(,)1()0,( '2
=−= xuxxu

t
. 

 

13.10. Найдите решение уравнения 
2
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∂
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∂
, удовлетворяющее следующим 

начальным условиям: xxxuxu
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13.11. Найдите закон колебания бесконечной струны, определяемый уравнением  
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  в момент времени 
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ЗАНЯТИЕ № 14 

 

Тема: Однородное уравнение теплопроводности на прямой 
 

 

 

I. ОСНОВНЫЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ 
 

14.1. Задача Коши для уравнения теплопроводности стержня. 

Процесс передачи теплоты от более нагретых частей тела к менее нагретым 

связан с изменением температуры U  в различных частях тела. Поэтому описание 
такого процесса в макроскопической теории в общем случае сводится к 
определению нестационарного температурного поля в теле. 

Рассмотрим температурный процесс в теле, представляющем собой 

длинный, достаточно тонкий однородный стержень, теплоизолированный от 
окружающего пространства, за исключением концов (см. рис. 14.1). Кроме того, 
будем предполагать, что внутри 
стержня отсутствуют тепловые 

источники. Если обозначим через 
),( txU  температуру точек стержня 

с абсциссой x в момент времени t, то можно показать (см., например, [19], с. 82), 

что  функция ),( txU  удовлетворяет дифференциальному уравнению 
 

                                           
2

2

2

x

U
a

t

U

∂

∂
=

∂

∂
,                                                 (14.1а) 

 

где a – некоторая постоянная. 
В дальнейшем уравнение (14.1а) будем называть однородным уравнением 

теплопроводности стержня. 

Задача Коши для однородного уравнения теплопроводности состоит в 
нахождении функции ),( txU , удовлетворяющей соотношениям: 
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где M  – некоторая положительная постоянная. 
С физической точки зрения задачу Коши (14.1)-(14.3) можно истолковать 

так: в начальный момент времени ( 0=t ) температура неравномерно нагретого 

                        Рис. 14.1 
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бесконечного стержня задана функцией )()0,( xxU ϕ= . Требуется найти 

распределение температур ),( txU  для любого 0>t . 
 

Справедливо следующее важное утверждение (см., например, [19], с. 88). 
 

Теорема 14.1. Если )(xϕ  является кусочно-непрерывной и ограниченной на 

действительной оси ),( ∞+−∞ , то задача Коши (14.1)-(14.3) имеет, и притом 

единственное, решение. 
 

Прежде чем установить алгоритм решения задачи Коши (14.1)-(14.3), 

введем в рассмотрение некоторые вспомогательные понятия и формулы. 
 

14.2. Интегральная формула Фурье и преобразование Фурье. 
Пусть функция )(xf  абсолютно интегрируема на (т.е. существует интеграл 

∫
+∞

∞−

dxxf )( ) и является кусочно-гладкой на каждом конечном отрезке ],[ ll−  оси 

OX . Тогда, согласно теории тригонометрических рядов Фурье (см., например, 
[11], Ч.II или [19]), во всех точках непрерывности функции )(xf  справедливы 

следующие формулы: 
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  k = 0, 1, 2, …                                  (14.5) 
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1 π
                                       (14.6) 

 

Подставив в правую часть (14.4) вместо 
k

a  и 
k

b  их значения из (14.5) и 

(14.6), будем иметь: 
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Далее выясним, что произойдет с формулой (14.7), если в ней перейдем к 
пределу при ∞→l . 

Для этого, во-первых, заметим, что  
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Во-вторых, если введем обозначения 
ll

k
kkkk

π
ααα

π
α =−=Δ= +1, , то 

сумму в правой части (14.7) можно записать в форме интегральной суммы вида 
 

                                  dtxttf
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для интеграла dtxttfd ∫∫
∞

∞−

∞

− )(cos)(
1

0

αα
π

. Следовательно, из равенства (14.7) после 

перехода к пределу при ∞→l  получим: 
 

                                         .                                (14.9) 

 

Формула (14.9) называется интегральной формулой Фурье. 
В более общем случае справедливо следующее утверждение (см., 

например, [19], с. 25). 

Теорема 14.2. Если функция )(xf  абсолютно интегрируема на 

действительной оси ),( ∞+−∞  и кусочно-гладкая на каждом конечном отрезке 

],[ ll− , то имеет место равенство: 
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где )(lim)0(
0

0
0

xfxf
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=+ , )(lim)0(
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0
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xfxf
xx −→

=− . 

Далее заметим, что интеграл dtxttf∫
∞

∞−

−=Φ )(cos)()( αα  в формуле (14.9) 

представляет собой четную функцию от α , т.е. )()( αα Φ−=−Φ . Поэтому 

равенство (14.9) можно видоизменить так: 
 

                                      dtxttfdxf ∫∫
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В свою очередь, функция вида dtxttf∫
+∞

∞−

−=Ψ )(sin)()( αα  является нечетной, и 

поэтому (понимая интеграл ∫
+∞

∞−

Ψ αα d)(  в смысле главного значения по Коши) 

будем иметь: 
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Наконец, умножая обе части (14.12) на мнимую единицу i и вычитая 
результат из (14.11), с учетом формул Эйлера, получим 
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т.е. справедливы формулы: 
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где  
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π
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Таким образом, интегральную формулу Фурье (14.9) можно представить в 
виде двух преобразований: прямого преобразования Фурье (14.14) и обратного 

преобразования Фурье (14.13). 

Полученный результат можно сформулировать в виде следующего 
утверждения. 

Теорема 14.3. Если функция )(xf  абсолютно интегрируема на 

действительной оси ),( ∞+−∞  и кусочно-гладкая на каждом конечном отрезке 

],[ ll− , то существует прямое преобразование Фурье (14.14), и во всех точках 

непрерывности функции )(xf  верна формула обращения (14.13), где интеграл 

понимается в смысле главного значения по Коши, т.е. 
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Замечание 14.1. Отметим, что полученная выше промежуточная формула  
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называется интегральной формулой Фурье в комплексной форме. 
 

Пример 14.1. Найти прямое и обратное преобразования Фурье функции 
xb

exf
−

=)( , где b – некоторое положительное число. 
 

РЕШЕНИЕ. В силу формулы (14.14) и с учетом четности функции 
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⎠
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+⎟
⎠

⎞
⎜
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⎛
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A

tib

A

e
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e
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0

0 )()( 1
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2
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lim

2

1 αα

απαπ
=

22

2

απ +b

b
. 

 

Отсюда, согласно формуле обращения (14.13), получим: 
 

xb
e
−

= α
απ

α

d
b

eb
xi

∫
+∞

∞− +
⋅

22
= α

α

αα

π
d

b

xixb

∫
+∞

∞− +

+
⋅

22

sincos
= α

α

α

π
d

b

xb

∫
+∞

∞− +
⋅

22

cos
= α

α

α

π
d

b

xb

∫
+∞

+
⋅

0

22

cos2
. 

 

Важно отметить, что попутно мы здесь получили следующий результат:  
 

                                         α
α

α
d

b

x

∫
+∞

∞− +
22

cos
=

xb
e

b

−
⋅

π
.                                     (14.15а) 

 

Замечание 14.2. Формула (14.15а) показывает, что интегральные 
преобразования Фурье полезны и при вычислении некоторых несобственных 
интегралов. 

 

14.3. Решение задачи Коши для уравнения теплопроводности 

стержня. Задачу Коши (14.1)-(14.3) будем решать методом разделения 

переменных, т.е. будем искать ее частные решения, не равные тождественно 
нулю, в виде произведения 

                                         )()(),( tTxXtxU ⋅= .                                        (14.16) 
 

После подстановки (14.16) в уравнение (14.1) получим 
)(

)(''

)(

)('
2

xX

xX

tTa

tT
= . Так как x 

и t – независимые переменные, то последнее равенство может быть, только если 

оба эти отношения равны одной и той же постоянной. Поскольку с течением 

времени стержень охлаждается, то 0<
∂

∂

t

U
. Но тогда и 0)(' <tT . Следовательно, 

эта постоянная должна быть отрицательной, и поэтому обозначим ее через 2λ−

, т.е. будем иметь: 

                                                       2

2 )(

)(''

)(

)('
λ−==

xX

xX

tTa

tT
.                                   (14.17) 

 

Из (14.17), в свою очередь, получаем два обыкновенных линейных 

дифференциальных уравнения с постоянными коэффициентами: 
 

                                           0)()( 2"
=+ xXxX λ ,                                         (14.18) 

 

 

                                           0)()(' 22
=+ tTatT λ .                                         (14.19) 

 

Решая дифференциальные уравнения (14.18), получим: 
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                                               xi
eAxX
λλ)()( = ,                                             (14.20) 

 

где )(λA  – произвольная функция от ),( ∞+−∞∈λ . 

С другой стороны, одним из ненулевых решений уравнения (14.19) будет 
функция вида 

                                                 ta
etT

22

)( λ−
= .                                                (14.21) 

 

Таким образом, в силу (14.16), (14.20) и (14.21) частное решение уравнения 

(14.1) можно представить в виде  xita
eAtxU

λλλ +−
=

22

)(),(
^

.  

С целью получения решения задачи Коши (14.1)-(14.3) введем в 
рассмотрение несобственный интеграл: 

 

                                         ∫
+∞

∞−

+−
= λλ λλ

deAtxU
xita

22

)(),( .                                 (14.22) 

 

Далее будем подбирать функцию )(λA  так, чтобы именно формулой 

(14.22) можно было задавать решение задачи Коши (14.1)-(14.3). 

Для этого, во-первых, заметим, что функция вида (14.22) будет решением 

дифференциального уравнения (14.1), если частные производные по x и t от 
интеграла (14.22) можно вычислять путем дифференцирования под знаком 

интеграла. 

Во-вторых, нужно попытаться найти функцию )(λA  так, чтобы 

выполнялось начальное условие (14.2), т.е. чтобы выполнялось равенство: 
 

                                         +∞<<∞−=∫
+∞

∞−

xxdeA
xi ),()( ϕλλ λ .                         (14.22) 

 

Но равенство (14.22) означает, что функция )(xϕ  есть обратное преобразование 

Фурье для функции )(2 λπ A . Следовательно, здесь функция )(λA  должна 

определяться по формуле: 

                                                    ∫
+∞

∞−

−
= ξξϕ

π
λ λξ

deA
i)(

2

1
)( .                                   (14.23) 

 

С учетом (14.23) из (14.22) после изменения порядка интегрирования получим  
 

    ξξϕλ
π

λξξϕ
π

ξλλλλλξ
ddededetxU

xitaxitai

∫ ∫∫ ∫
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2
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),( )(2222

.    (14.24) 
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Наконец, вычислив с помощью замены переменных внутренний интеграл 

∫
+∞

∞−

−+−
= λξλλ

deI
xita )(22

 (который здесь понимается в смысле главного значения по 

Коши), с учетом известного значения интеграла Пуассона ∫
+∞

−
=

0
2

2 π
dze

z  из 

(14.24) окончательно получим: 

                                    ξξϕ
ξ

π
d

ta

x

ta
txU ∫

+∞

∞−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−= )(

4

)(
exp

2

1
),(

2

2

.                         (14.25) 

 

Итак, формальное решение задачи Коши (14.1)-(14.3) дается формулой 

(14.25), которую принято называть формулой Пуассона. 
На самом деле справедливо следующее утверждение (см., например, [19], 

с. 88). 

Теорема 14.4. Если функция )(xϕ  является кусочно-непрерывной и 

ограниченной на действительной оси ),( ∞+−∞ , то решение задачи Коши       

(14.1)-(14.3) задается формулой Пуассона (14.25). 
 

Пример 14.2. Найти ограниченное решение дифференциального 
уравнения (13.1), удовлетворяющее начальному условию  

 

                            
⎩
⎨
⎧

><

<<
==

,0

;
)(),()0,(

21

210

xxиxxпри

xxxприU
xxxU ϕϕ                  (14.26) 

 

где 
0

U  – некоторое постоянное число. 
 

РЕШЕНИЕ. Здесь для функции )(xϕ , задаваемой формулой (14.26), 

выполняются все условия теоремы 14.4. Поэтому решение данной задачи можно 
получить по формуле Пуассона (14.25): 
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С помощью замены переменной 
ta

x

2

ξ
µ

−
=  полученный результат можно 

записать в виде 
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где ∫
−=Φ

z

dez

0

22
)( µ

π

µ  – интеграл вероятностей. 
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II. КОНТРОЛЬНЫЕ ВОПРОСЫ И ЗАДАНИЯ 

 

1. Что означает, что функция )(xf  разлагается в тригонометрический ряд 

Фурье  на отрезке ],[ ll− ? 

2. При каких условиях справедлива интегральная формула Фурье для функции 

)(xf ? 

3. Напишите формулу прямого преобразования Фурье для )(xf . 

4. Какова формула обратного преобразования Фурье для функции )(xf ?               

В каком смысле надо понимать интеграл в обратном преобразовании Фурье? 

5. Сформулируйте задачу Коши для уравнения теплопроводности стержня. 
6. Каким методом можно решить задачу Коши для уравнения 
теплопроводности? 

7. Сформулируйте достаточные условия, при которых задача Коши для 
уравнения теплопроводности имеет единственное решение, которое можно 
задавать формулой Пуассона. 

 

 

III. ПРИМЕРЫ И ЗАДАЧИ ДЛЯ АУДИТОРНОЙ РАБОТЫ 

 

14.1. Представьте в виде интеграла Фурье функцию: 
 

⎪
⎩

⎪
⎨

⎧

<<−−

<<

>

=

.011

;101

;10

)(

xпри

xпри

xпри

xf  

Используйте полученный результат для вычисления несобственного 

интеграла ∫
+∞

0

3
sin

1
ξξ

ξ
d . 

 

14.2. Найдите преобразование Фурье функции 
⎪⎩

⎪
⎨
⎧

>

≤
=

.10

;1
)(

xпри

xприx
xf  

 

14.3. Найдите распределение температур в бесконечном стержне, зная, что 

начальное распределение температур задается формулой ,)( /

0

2
hx

eux
−

=ϕ  где 

hu ,0
 – некоторые постоянные. 

 



182 

 

УКАЗАНИЕ. При вычислении несобственного интеграла примените    

формулу  ∫
+∞

∞−

−
=

λ

πλ
dze

z
2

. 

 

14.4. Найдите распределение температур в бесконечном стержне, если в 
начальный момент температура в стержне была распределена следующим 

образом: 

⎪
⎩

⎪
⎨

⎧

>

<≤−+

≤≤−

==

.0

;0/1

;0/1

)()0,(

lxпри

xlприlx

lxприlx

xxu ϕ  

 

IV. ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ 
 

14.5. Представьте в виде интеграла Фурье функцию: 
 

⎪
⎪

⎩

⎪
⎪

⎨

⎧

>

<<

==−=

<<−

=
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14.6. Найдите преобразование Фурье функции 
 

                                              
⎩
⎨
⎧

<

≥
=

−

.00

;0
)(

xпри

xприe
xf

x

 

 

14.7. Найдите решение дифференциального уравнения (14.1а) при начальном 

условии: 
 

а) +∞<<∞−== xconstuxU ,)0,( 0
 (объясните результат); 

 

б) 
⎩
⎨
⎧

+∞<<

<<∞−−
=

.0,

,0,
)0,(

0

0

xu

xu
xU  

Изобразите примерный график зависимости U  от x  при малых значениях t 
и при больших значениях t. 
 

 

14.8. Найдите решение дифференциального уравнения 0
2

2

=
∂

∂
−

∂

∂

x

u

t

u
, 

удовлетворяющее начальному условию +∞<<∞−= xlxxu ,sin)0,( , где l – 

некоторое постоянное число. 
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ЗАНЯТИЕ № 15 
 

Тема: Уравнение Лапласа. Гармонические функции 

и их основные свойства 
 

I. ОСНОВНЫЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ 
 

15.1. Гармонические функции двух действительных переменных и их 
связь с аналитическими функциями комплексного переменного. В пункте 
12.2 уже было отмечено, что при изучении плоских стационарных тепловых 
полей, в которых отсутствуют источники тепла, а также при описании некоторых 
электростатических полей, в которых отсутствуют заряды, приходим к так 
называемому двумерному уравнению Лапласа: 

 

                                                           0=ΔU ,                                                (15.1) 
 

где 
2

2

2

2

yx ∂

∂
+

∂

∂
=Δ  – дифференциальный оператор Лапласа, а ),( yxUU =  – искомая 

функция. 
Важно также отметить, что уравнение Лапласа (15.1) появляется и при 

исследовании установившегося движения жидкости без вихрей и источников в 
некоторой области (см., например, [22], с. 277). 

С уравнением Лапласа (15.1) тесно связаны так называемые гармонические 
функции. 

Определение 15.1. Функция ),( yxUU =  называется гармонической в 

некоторой области ⊆D R
2
, если )(2

DCU ∈  (т.е. функция U непрерывна в 

области D вместе со своими частными производными до второго порядка 
включительно) и удовлетворяет в этой области уравнению (15.1). 

Нетрудно проверить, что функция )(),( 22

1 xykyxu −= , где k – произвольная 

постоянная, является гармонической во всей плоскости R
2
, а функция 

)ln(),( 22

2 yxyxu +=  является гармонической в области =
0

D  R
2
\{(0,0)}. 

Далее отметим некоторые важные свойства гармонических функций, часто 
используемые в дальнейшем. 

В первую очередь установим тесную связь между аналитическими 
функциями комплексного переменного iyxz +=  и гармоническими функциями 

от двух действительных переменных x и y. 

Напомним [4], что функция ),(),()( yxiVyxUzf +=  называется 

аналитической в некоторой области D комплексной плоскости переменной 

iyxz += , если в каждой точке Dz∈  она имеет конечную производную: 
 

                                         
z

zfzzf

dz

zdf

z Δ

−Δ+
=

→Δ

)()(
lim

)(

0
.                                     
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Справедливо следующее важное утверждение. 
Теорема 15.1. Действительная и мнимая части произвольной функции 

),(),()( yxiVyxUzf += , однозначной и аналитической в некоторой области D, 

являются в этой области гармоническими функциями. 

Доказательство. Так как функция ),(),()( yxiVyxUzf +=  является 

аналитической в области D , то ее действительная и мнимая части удовлетворяют 
в области D  условиям Коши-Римана: 

 

                                      
x

V

y

U

y

V

x

U

∂

∂
−=

∂

∂

∂

∂
=

∂

∂
, .                                           (15.2) 

 

Известно (см., например, [4]), что аналитическая в области D  функция 

)(zf  имеет в этой области производные всех порядков. Следовательно, 

уравнения (15.2) можно дифференцировать по x и y. Дифференцируя первое из 
них по x, а второе по y и пользуясь теоремой о равенстве смешанных 

производных (см., например, [11], Ч. I, с. 494), получим 
2

22

2

2

y

U

yx

V

x

U

∂

∂
−=

∂∂

∂
=

∂

∂
, 

откуда, в свою очередь, будем иметь  0
2

2

2

2

=
∂

∂
+

∂

∂
=Δ

y

U

x

U
U , т.е. функция ),( yxU  

является гармонической в области D. 

Совершенно аналогично доказывается, что и функция ),( yxV  является 

гармонической в D. ◄ 

Определение 15.2. Две гармонические в области D функции ),( yxU  и 

),( yxV , связанные условиями Коши-Римана (15.2), называются сопряженными. 

Теорема 15.2. Всякая гармоническая в односвязной области функция 

служит действительной (мнимой) частью некоторой аналитической в этой 

области функции. 

Доказательство. Пусть ),( yxϕ  – функция гармоническая (и однозначная) 

в данной односвязной области D. Покажем, как найти аналитическую в этой 

области функцию ),(),()( yxiVyxUzf += , действительная часть которой 

совпадает с ),( yxϕ , т.е. ),(),( yxyxU ϕ= . Для этого заметим, что если в области D 

задана функция ),( yxϕ , то сопряженная с ней гармоническая функция ),( yxV  

весьма просто выражается через ),( yxϕ . 

Действительно, из условий Коши-Римана (15.2) имеем: 
 

                                     dy
x

dx
y

dV
∂

∂
+

∂

∂
−=

ϕϕ
.                                              (15.3) 

Поскольку 0=Δϕ  в области D, то правая часть (15.3) является полным 

дифференциалом и, следовательно,  
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                                       Cdy
x

dx
y

yxV
yx

yx

+
∂

∂
+

∂

∂
−= ∫

),(

),( 00

),(
ϕϕ

,                                 (15.4) 

 

где ),( 00 yx  – фиксированная точка области D, ),( yx  - произвольная точка этой  

области, а  C – произвольная действительная постоянная.  
Таким образом, заданная гармоническая функция ),( yxϕ  служит 

действительной частью следующей аналитической функции: 
 

                         iCdy
x

dx
y

iyxzf
yx

yx

+
∂

∂
+

∂

∂
−+= ∫

),(

),( 00

),()(
ϕϕ

ϕ .                            (15.5) 

 

Ясно, что для аналитической в области D функции )(zif  заданная функция 

),( yxϕ  служит мнимой частью. ◄ 

Из доказательства предыдущей теоремы видно, что справедливо 
следующее утверждение. 

Следствие 15.1. Аналитическая в односвязной области D функция )(zf  по 

ее заданной действительной части  определяется с точностью до 

аддитивной произвольной мнимой 

постоянной iC  по формуле (15.5). 

Пример 15.1. Найти 

аналитическую функцию iVUzf +=)( , 

если 22),( xyyxU −= . 

РЕШЕНИЕ. Так как функция 
22),( xyyxU −=  является гармони-

ческой в R2
, то согласно формуле (15.5) 

получим: 

iCxdyydxixyzf
yx

++−−= ∫
),(

)0,0(

22 2)( . 

Вычисляя интеграл в правой части последнего равенства по ломаной OAM 

(см. рис. 15.1), получаем:  

                                    iCixyxyzf +−−= 2)( 22  

или iCzzf +−=
2)( , где C – произвольная действительная постоянная. ◄ 

 

Пусть D  – конечная область на плоскости комплексного переменного 
iyxz += , границей которой служит произвольный замкнутый кусочно-гладкий 

контур L, причем всюду в дальнейшем будем предполагать, что на L выбрано 
положительное направление (т.е. при обходе контура L область D все время 
остается слева). В теории функций комплексного переменного устанавливается 
следующая интегральная формула Коши (см., например, [4], с.107): 
 

),( yxϕ

                        Рис. 15.1 
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                                  ∫ −
=

L

d
z

F

i
zF τ

τ

τ

π

)(

2

1
)( ,  Dz∈ ,                                        (15.6) 

 

где )(zF  – аналитическая в D функция, непрерывная в замкнутой области 

LDD ∪= . 

Здесь важно заметить, что формула Коши (15.6) позволяет вычислить 

значение функции F в любой точке области D, если известны граничные 

значения этой функции. 

В частности, если }:{ 0 RzL =−= ττ  есть окружность радиуса R c центром 

в точке 
000

iyxz += , то, полагая ϕτ i
eRz ⋅=−

0
, из (15.6) получаем следующую 

формулу: 

                                   ∫ ⋅+=
π

ϕ ϕ
π

2

0

00 )(
2

1
)( deRzFzF

i .                                    (15.7) 

 

Последняя формула выражает так называемую теорему о среднем для 

аналитических функций. 

Теорема 15.3. Если функция )(zF  непрерывна в замкнутом круге 

}:{ 0 RzT ≤−= ττ  и является аналитической внутри этого круга, то ее значение 

в центре круга равно среднему арифметическому значений на окружности. 

Наконец, важнейшим следствием, вытекающим из интегральной формулы 

Коши (15.6), является следующее утверждение, обычно называемое принципом 

максимума модуля аналитической функции (см. [4], с.113). 

Теорема 15.4. Если функция )(zF , не равная тождественно постоянной, 

является аналитической в области D и непрерывной в замкнутой области 

LDD ∪= , то ни в одной внутренней точке этой области )(zF  не может 

достигать наибольшего значения. 

Замечание 15.1. Важно отметить, что если функция )(zF , не равная 

тождественно постоянной, является аналитической в области D, непрерывной в 

замкнутой области LDD ∪=  и, кроме того, не обращается в нуль, то ни в одной 

внутренней точке этой области )(zF  не может достигать наименьшего значения. 

Действительно, в этом случае достаточно применить теорему 15.4 к функции 

)(/1)( zFzg = . 

Из теоремы 15.4  и замечания 15.1 вытекает, что модуль аналитической в 
области D функции (отличной от постоянной) может достигать экстремума лишь 
на границе этой области. 

Далее на основании теорем 15.1 – 15.4 легко устанавливаются следующие 
важные свойства гармонических функций. 
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Теорема 15.5. Если функция ),( yxU  непрерывна в замкнутом круге 

})()(:),{( 22

0

2

0 RyyxxyxT ≤−+−=  и является гармонической внутри этого 

круга, то ее значение в центре круга равно среднему арифметическому значений 

на окружности, т.е. справедливо равенство:  
 

                       ∫ ⋅+⋅+=
π

ϕϕϕ
π

2

0

0000 )sin,cos(
2

1
),( dRyRxUyxU .                     (15.8) 

 

Доказательство получается непосредственно из формулы (15.7) 

отделением действительной части. 

Формула (15.8) называется формулой о среднем значении для 

гармонических функций. 

Теорема 15.6. Если функция ),( yxU , не равная тождественно 

постоянной, является гармонической в области D и непрерывной в замкнутой 

области LDD ∪= , то ни в одной внутренней точке этой области функция 

),( yxU  не может достигать экстремума. 

Доказательство. Здесь достаточно доказать теорему для случая 
максимума, ибо точка минимума гармонической в области D функции ),( yxU  

является точкой максимума функции  ),( yxU− , также гармонической в 

рассматриваемой области.  

Будем доказывать терему методом от противного. Предположим, что 
гармоническая в области D функция ),( yxU  достигает максимума во внутренней 

точке ),( 00 yxP  области D. В некоторой окрестности точки ),( 00 yxP  построим 

однозначную аналитическую функцию )(zf  такую, что )(Re),( zfyxU = . Тогда 

функция )(zfe  будет аналитической в рассматриваемой окрестности точки 

),(
00

yxP  и не постоянна в ней. Но ее модуль ),()( yxUzf ee = , по сделанному выше 

предположению, достигает максимума в точке ),( 00 yxP , что противоречит 

теореме 15.4. Полученное противоречие и доказывает теорему.◄ 

Обычно теорему 15.6 называют принципом максимального значения для 

гармонических функций. 

Из последней теоремы вытекает ряд полезных следствий. 

Следствие 15.2. Если функции ),( yxp  и ),( yxq  являются гармоническими 

в области D и непрерывными в замкнутой области LDD ∪=  и если qp ≤  на L, 

то qp ≤   внутри области D. 

В самом деле, функция pqh −=  непрерывна в LDD ∪=  и гармонична в 

D, причем 0≥h  на L. В силу теоремы 15.6 имеем 0≥h  всюду внутри области D, 

что и требовалось доказать.◄ 
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Следствие 15.3. Если функции ),( yxp  и ),( yxq  являются гармоническими 

в области D и непрерывными в замкнутой области LDD ∪=  и если qp ≤  на L, 

то qp ≤   всюду внутри области D. 

Действительно, из qp ≤  на L  следует, что три гармонические в области D 

функции qpq ,,−  удовлетворяют на L неравенству: qpq ≤≤− . Тогда, применяя 

дважды следствие 15.2, получим qpq ≤≤−  всюду внутри D  или qp ≤   внутри 

области D.◄ 

Следствие 15.4. Для гармонической в области D и непрерывной в 

замкнутой области LDD ∪=  функции ),( yxp  всюду в LDD ∪=  имеет место 

неравенство Myxp ≤),( , где ),(max
),(

yxpM
Lyx ∈

= . 

Для доказательства этого утверждения достаточно положить 

),(max
),(

yxpq
Lyx ∈

=  и воспользоваться следствием 15.3. ◄ 

 

II. КОНТРОЛЬНЫЕ ВОПРОСЫ И ЗАДАНИЯ 

1. При исследовании каких физических процессов возникает уравнение 
Лапласа? 

2. Дайте определение гармонических функций в области D. 

3. Какая функция комплексного переменного iyxz +=  называется 

аналитической в некоторой области D ? 

4. Сформулируйте теоремы, устанавливающие связь аналитических функций 

комплексного переменного с гармоническими функциями двух 
действительных переменных. 

5. По какой формуле определяется аналитическая функция по заданной ее 
действительной части? 

6. Напишите интегральную формулу Коши для аналитических функций 

комплексного переменного. В чем состоит основная суть этой формулы? 

7. Сформулируйте теорему о среднем значении и принцип максимального 
значения для гармонических функций. 

8. Какие важные следствия вытекают из принципа максимального значения для 
гармонических функций? 

 

III. ПРИМЕРЫ И ЗАДАЧИ ДЛЯ АУДИТОРНОЙ РАБОТЫ 
 

15.1. Проверьте, являются ли указанные функции гармоническими в своих 
естественных областях определения: 

                  а) )ln(),( 22
yxyxU += ;               б) 

x

y
yx =),(ω ; 
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                  в) 
x

y
arcctgyxV =),( ;               г) 

22
),(

yx

x
yx

+
=ϕ . 

 

15.2.  Докажите утверждение: если ),( yxU  является гармонической функцией, то 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

++
=

2222
,),(

yx

y

yx

x
UyxV  тоже гармоническая. 

 

15.3. Существует ли аналитическая функция iVUzf +=)( , у которой: 

         а) 22),( yxyxU += ;                    б) 2),( xyyxV = ? 
 

15.4.  Найдите аналитические  функции iVUzf +=)( , если: 

                  а) yeyxU
x sin),( = ;               б) 23 3),( xyxyxV −= . 

 

15.5.  Найдите аналитическую функцию iVUzf +=)(  такую, что  

        xyxyxU +−=
22),(  и if =)0( . 

 

15.6. Выясните, может ли функция yeyxU
x sin),( =  принимать максимальное 

(минимальное) значение внутри круга  }25:),{( 22
<+= yxyxD . 

 

15.7. Удовлетворяет ли функция yxyxV sinsin),( =  в каких-либо точках 

плоскости уравнению Лапласа? Существует ли аналитическая функция, 
имеющая мнимой частью данную функцию V ? 

 

IV. ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ 
 

15.8. Проверьте, являются ли указанные функции гармоническими в своих 
естественных областях определения: 

                  а) 22),( yxyx −=ϕ ;               б) xeyx
y cos),( =ψ ; 

                  в) 
x

y
arctgyx =),(µ ;               г) 

22
),(

yx

y
yxW

+
= . 

 

15.9.  Найдите аналитические  функции iVUzf +=)( , если: 

                  а) xeyxV
y 2cos),( 2−

= ;               б) xeyxU
y sin),( = . 

 

15.10. Найдите аналитическую функцию iVUzf +=)(  такую, что  

           323),( yyxyxV −=  и 0)0( =f . 
 

15.11. Выясните, может ли функция 
x

y
arctgyx =),(ϕ  принимать максимальное 

(минимальное) значение внутри круга  }1)3()3(:),{( 22
<−+−= yxyxD . 

 

15.12. Существует ли аналитическая функция ),(),()( yxiVyxUzf += , у которой: 

                  а) 33),( yxyxV += ;               б) 
( )222

22

),(
yx

yx
yxU

+

−
= ?  
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ЗАНЯТИЕ № 16 
 

Тема: Задача Дирихле для гармонических функций двух переменных.  
Решение задачи Дирихле методом Фурье 

 

 

I. ОСНОВНЫЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ 
 

16.1. Задача Дирихле для гармонических функций двух 

переменных. Пусть D  – некоторая конечная область на плоскости 2

xy
R , 

ограниченная простой 

кусочно-гладкой замкнутой 

кривой L (см. 16.1). Будем 

предполагать, что кривая L 

задана параметрически 

следующими уравнениями: 
 

          
⎩
⎨
⎧

=

=

)(

)(

syy

sxx
,  βα ≤≤ s . 

 

Одной из основных 
краевых задач для уравнения 
Лапласа 0=ΔU , где 

2

2

2

2

yx ∂

∂
+

∂

∂
=Δ  – дифференциальный  оператор Лапласа, а ),( yxUU =  – искомая 

функция, является следующая задача. 
Задача Дирихле. Требуется найти функцию ),( yxuu = , гармоническую 

внутри области D , непрерывную в замкнутой области LDD ∪= , если на 

границе L имеет место равенство )())(),(( sfsysxu = , где )(sf  – заданная 

непрерывная функция параметра ],[ βα∈s . 

Другими словами, требуется найти решения уравнения Лапласа  
 

                                              0),( =Δ yxu ,  Dyx ∈),( ,                                   (16.1) 
 

удовлетворяющие на L  следующему условию: 
 

                                                   )(sfu
L
= ,                                                    (16.2) 

 

где )(sf  – заданная непрерывная функция параметра ],[ βα∈s . 
 

Если 0)( ≡sf , то задача Дирихле (16.1)-(16.2) называется однородной, в 

противном случае она называется неоднородной. 

                        Рис. 16.1 
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Важно отметить, что к задаче Дирихле (16.1)-(16.2) приводятся многие 
задачи из физики и других прикладных наук. В частности, этой задаче можно 
придать следующий физический смысл: если ),( yxu  означает температуру 

пластинки D  в точке ),( yxM , то задача Дирихле (16.1)-(16.2) состоит в том, 

чтобы найти температуру внутри пластинки, зная ее на всей границе L.  
 

16.2. О единственности и устойчивости решения задачи Дирихле. Для 
того чтобы в дальнейшем показать, что задача Дирихле (16.1)-(16.2) является 
корректно поставленной, в этом пункте установим единственность и 

устойчивость решения этой задачи. 

Теорема 16.1. Если задача Дирихле (16.1)-(16.2) имеет решение, то оно 

единственно. 

Доказательство. Предположим противное, т.е. что задача (16.1)-(16.2) 

имеет два различных решения: ),(1 yxu  и ),(2 yxu . Рассмотрим вспомогательную 

функцию ),(),(),( 21 yxuyxuyxV −= . Ясно, что функция ),( yxV  будет решением 

однородной задачи Дирихле: 

                                                
⎩
⎨
⎧

=

∈=Δ

.0

,),(,0),(

L
V

DyxyxV
                               

Иначе говоря, ),( yxV  есть гармоническая в области D функция, непрерывная в 

LDD ∪=  и равная нулю на границе L. Но тогда на основании теоремы 15.6 

(принципа максимального значения для гармонических функций) заключаем, что 

0),( ≡yxV  во всех точках DyxM ∈),( . В самом деле, если бы в некоторой точке 

DyxM ∈),( 000
 имело 0),( 00 >yxV  или 0),( 00 <yxV , то гармоническая функция 

),( yxV  имела бы строгий максимум или строгий минимум внутри области D, что 

невозможно согласно теореме 15.6. Таким образом, имеем 0),( ≡yxV  или ),(1 yxu

≡ ),(2 yxu , т.е. решение задачи Дирихле (16.1)-(16.2) единственно.◄ 
 

Теорема 16.2. Если )(sf  непрерывная функция, то решение задачи Дирихле 

(16.1)-(16.2) устойчиво. 

Доказательство. Рассмотрим следующие две краевые задачи Дирихле: 
 

                                      
⎩
⎨
⎧

=

∈=Δ

),(

,),(,0),(

1 sfu

Dyxyxu

L

                                         (16.3) 

и 

                                      
⎩
⎨
⎧

=

∈=Δ

),(

,),(,0),(

2 sfu

Dyxyxu

L

                                         (16.4) 
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где )(1 sf  и )(2 sf  – заданные непрерывные функции параметра ],[ βα∈s  такие, 

что  
                                              ],[,)()( 21 βαε ∈<− ssfsf .                                    (16.5) 

 

Пусть ),(1 yxu  и ),(2 yxu  – решения задач (16.3) и (16.4) соответственно. 

Тогда разность ),(),(),(
21

yxuyxuyx −=ω  будет решением задачи Дирихле    

вида: 

⎩
⎨
⎧

−=

∈=Δ

),()(

,),(,0),(

21 sfsf

Dyxyx

L
ω

ω
 

 

т.е. ),( yxω  есть гармоническая в D, непрерывная в LDD ∪= . Поэтому в силу 

(16.5) и принципа максимального значения для гармонических функций (теорема 
15.6) будем иметь: 
                                                εωω <≤

∈
),(max),(

),(
yxyx

LyxD
, 

 

что равносильно Dyxyxuyxu ∈<− ),(,),(),( 21 ε . ◄ 

 

16.3. Уравнение Лапласа в полярных координатах. В этом пункте 
выведем выражение оператора Лапласа 

 

                                      
2

2

2

2

y

u

x

u
u

∂

∂
+

∂

∂
=Δ                                                       

 

в полярной системе координат (см. также, например, [11], Ч. I, с. 577). 

Известно, что связь между декартовыми координатами ),( yx точки M  и ее 

полярными координатами ),( ϕr  задается 

формулами (см. рис. 16.2): 
 

           
⎩
⎨
⎧

=

=

,sin

cos

ϕ

ϕ

ry

rx
                      (16.6) 

 

где 22
yxr += , ],( ππϕ −∈ , причем  

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

<<−

≥<+

≥

=

.0,0,

,0,0,

,0,

yxесли
x

y
arctg

yxесли
x

y
arctg

xесли
x

y
arctg

π

πϕ  

В силу (16.6) и согласно правилу 
дифференцирования сложных функций имеем: 
 

                    Рис. 16.2 
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).cos()sin(

,sincos

ϕϕ
ϕϕϕ

ϕϕ
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u
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∂
+

∂

∂
=

∂
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∂

∂
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∂
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∂
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Таким образом, получили следующую систему алгебраических уравнений 

относительно 
x

u

∂

∂
 и 

y

u

∂

∂
: 

                                            

⎪
⎪
⎩

⎪⎪
⎨

⎧

∂

∂
=

∂

∂
+−

∂

∂

∂

∂
=

∂

∂
+

∂

∂

.)cos()sin(

sincos

ϕ
ϕϕ

ϕϕ

u
r

y

u
r

x

u

r

u

y

u

x

u

                             (16.7) 

 

Решая систему (16.7), получаем: 
 

                                             

⎪
⎪
⎩

⎪⎪
⎨

⎧

∂

∂
+

∂

∂
=

∂

∂

∂

∂
−

∂

∂
=

∂

∂

.cos
1
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Далее с учетом (16.8) и правила дифференцирования сложных функций 

находим: 
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Наконец, с учетом (16.9) окончательно получим: 
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Итак, уравнение Лапласа в полярных координатах имеет вид: 
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16.4. Решение задачи Дирихле для круговых областей методом      

Фурье. Пусть }:),{( 222 ρ<+= yxyxD  и }:),{( 222 ρ=+= yxyxL . Очевидно, что в 

полярной системе координат окружность L задается уравнением вида: 
 

                                                       ],[, ππϕρ −∈=r .                                       (16.11) 
 

Следовательно, в полярных координатах задачу Дирихле для круга D можно 
сформулировать так: требуется найти функцию ),( ϕruu = , удовлетворяющую 

условиям:  
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                                                 ),(),( ϕϕ
ρ

fru
r

=
=

                                                (16.13) 

 

где )(ϕf  – заданная непрерывная и периодическая с периодом π2=T  функция. 

Будем искать ненулевые решения задачи Дирихле (16.12)-(16.13) методом 

Фурье (методом разделения переменных), т.е. в виде  
 

                                        )()(),( ϕϕ Φ⋅= rRru .                                           (16.14) 
 

Подставив функцию (16.14) в уравнение (16.12), получим: 
 

                  0)(")(
1

)()('
1

)()("
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=Φ⋅+Φ⋅+Φ⋅ ϕϕϕ rR
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Отсюда, разделяя переменные, будем иметь: 
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где const=λ . 

Замечание 16.1. Заметим, что функция )(ϕΦ  по смыслу задачи должна 

быть периодической с периодом π2=T  (т.е. )()2( ϕπϕ Φ=+Φ ). Поэтому в 

равенстве (16.15) мы взяли 2λ , а не 2λ− . 

Таким образом, в силу (16.15) для функций )(rR  и )(ϕΦ  получаем 

следующие обыкновенные дифференциальные уравнения: 
 

                                       0)('" 22
=−+ rRrRRr λ ,                                            (16.16) 

 

                                        0)()(" 2
=Φ+Φ ϕλϕ .                                              (16.17) 

 



195 

 

Но решения дифференциального уравнения (16.17), задаваемые формулой 

λϕλϕϕ sincos)( BA +=Φ , где A  и B  – произвольные постоянные, будут 

периодическими (с периодом π2=T ) только при целых значениях параметра λ
. Поэтому в дальнейшем будем полагать, что n=λ , где ...,2,1,0=n . 

Итак, периодические решения дифференциального уравнения (16.17) 

задаются формулой: 
 

                                      ϕϕϕ nBnA
nnn

sincos)( +=Φ ,                                (16.18) 
 

где 
n

A  и 
n

B  – пока неопределенные произвольные постоянные. 

С другой стороны, при n=λ  из (16.16) получим: 
 

                                    0)('" 22
=−+ rRnrRRr , если 1≥n ,                          (16.19) 

или 

                                          0'"
2

=+rRRr , если 0=n .                                 (16.20) 
 

В свою очередь, подстановкой 
t

er =  уравнение (16.19) легко приводится 
к виду: 

                                             0)(
)( 2

2

2

=− tRn
dt

tRd
.                                       (16.21) 

Решения дифференциального уравнения (16.21) определяются в виде 
nt

etR =)(1  или nt
etR
−

=)(2 , т.е. n
rrR =)(1  или 

n
rrR
−

=)(2 . Так как решения вида 
n

rrR
−

=)(2  имеют разрыв в начале координат (а мы ищем непрерывные решения 

задачи Дирихле!), то при 1≥n  частными решениями уравнения Лапласа в круге 

}:),{( 222 ρ<+= yxyxD  будут функции вида: 
 

                        ...,2,1),sincos(),( =+= nnBnArru
nn

n

n
ϕϕϕ                (16.22) 

 

Кроме того, дифференциальное уравнение (16.20) имеет в качестве 

фундаментальной системы частных решений функции 
2

1
)(10 =rR  и rrR ln)(20 = . 

Но поскольку функция rrR ln)(20 =  не является непрерывной для ],0[ ρ∈r , то при 

0=n  частным решением уравнения Лапласа будет функция вида: 
 

                                              
2

),( 0
0

A
ru =ϕ ,                                                 (16.23) 

 

где 
0

A  – произвольная постоянная. 

Таким образом, функции вида (16.22) и (16.23) удовлетворяют уравнению 

Лапласа (16.12) при всех ρ<r  и ]2,0[ πϕ∈ . Тогда, если предположить, что ряд 
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                            ∑
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ru ϕϕϕ                     (16.24) 

 

можно почленно дифференцировать дважды по r  и ϕ , то его сумма ),( ϕru  также 

будет удовлетворять уравнению Лапласа в круге }:),{( 222 ρ<+= yxyxD . 

Наконец, полагая в (16.24) ρ=r  и )(),( ϕϕρ fu = , получим: 
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Из последнего равенства видно, что числа 
0

A , 
n

n
Aρ  и 

n

n
Bρ  должны быть 

коэффициентами Фурье для функции )(ϕf , т.е.  
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Из приведенных выше рассуждений вытекает, что формально решение 
задачи Дирихле (16.12), (16.13) задается в виде суммы ряда (16.24), 

коэффициенты 
n

A  и 
n

B  которого определяются по формулам (16.25), (16.26). На 

самом деле справедливо следующее важное утверждение (см., например, [19], 

с.140). 

Теорема 16.3. Если )(ϕf  π2 - периодическая функция, непрерывная вместе 

с первой производной )(' ϕf , то решение задачи Дирихле (16.12), (16.13) 

существует и задается формулами (16.24), (16.25), (16.26). 
 

Замечание 16.2. Важно отметить, что методом Фурье легко решается 
задача Дирихле (16.1), (16.2) и в случае, когда D  является прямоугольной 

областью, т.е. }0,0),{( 2 bylxyxD ≤≤≤≤∈= R . 

 

16.1.4. Решение задачи Дирихле в виде интеграла Пуассона. Иногда 
решение задачи Дирихле для круга удобно задавать не в виде суммы ряда (16.24), 

а в некоторой интегральной форме. Для получения этой формулы преобразуем 

решение (16.24), подставляя в него вместо 
n

A  и 
n

B  их значения, задаваемые 

равенствами (16.25) и (16.26): 
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Здесь перестановка суммы и интеграла законна, так как ряд 
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где 
ρ

r
t = , ψϕα −= , сходится равномерно по ϕ  и ψ  внутри круга 

}:),{( 222 ρ<+= yxyxD . 

Далее, используя формулу Эйлера ααα
nine

in
sincos += , находим сумму 

ряда (16.28): 
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Наконец, с учетом последнего равенства из (16.27) получим: 
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Обычно интеграл в правой части (16.29) называют интегралом Пуассона 

для круга, а функцию )(ψf  - плотностью интеграла Пуассона. 

В заключение отметим, что, вообще говоря, при ρ=r  представление 

(16.29) теряет силу. Однако при выполнении условий теоремы 16.3 имеем 
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, так как сумма ряда (16.24), из которого получен интеграл 

Пуассона, является непрерывной функцией в замкнутом круге ρ≤r . Другими 

словами, функция вида 
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является гармонической функцией в открытом круге ρ<r , непрерывной в 

замкнутом круге ρ≤r , причем на границе ρ=r  принимает заданные значения 

)(ϕf . На самом деле справедливо следующее более общее утверждение (см., 

например, [22], с. 316). 

Теорема 16.4. Если )(ϕf – кусочно-непрерывная функция на отрезке 

],,[ ππ−  то функция ),( ϕru , определяемая формулой (16.30), является 

гармонической в открытом круге ρ<r , ограниченной и непрерывной в 

замкнутом круге ρ≤r  всюду, за исключением тех точек ),( ϕρ , которые 

являются точками разрыва функции )(ϕf . 

Из приведенных выше результатов видно, что если функция )(ϕf  является 

непрерывной на ],[ ππ− , то задача Дирихле для гармонических функций в  круге 

}:),{( 222 ρ<+= yxyxD  является корректно поставленной и ее единственное 

решение можно найти, например, по формуле (6.29). 

В заключение отметим, что в последние годы интенсивно развиваются 
методы решения задач математической физики с использованием систем 

компьютерной математики (см., например, [7]). 

 

 

II. КОНТРОЛЬНЫЕ ВОПРОСЫ И ЗАДАНИЯ 
 

1. Сформулируйте задачу Дирихле для гармонических функций. 

2. Может ли задача Дирихле для гармонических функций иметь более одного 
решения? 

3. Является ли решение задачи Дирихле для гармонических функций 

устойчивым? 

4. Напишите уравнение Лапласа в полярной системе координат. 
5. Какова математическая постановка задачи Дирихле для круга в полярной 

системе координат? 

6. В чем суть метода Фурье решения задачи Дирихле для круга? 

7. Сформулируйте достаточные условия, при которых решение задачи Дирихле 
для круга существует. 

8. Напишите решение задачи Дирихле для круга в виде интеграла Пуассона. 
9. Каков характер непрерывности гармонической функции, задаваемой 

интегралом Пуассона (16.29), если плотность )(ψf  является кусочно-

непрерывной на отрезке ],[ ππ− ? 

9. Укажите достаточные условия, при которых задача Дирихле для круга 
является корректно поставленной. 
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III. ПРИМЕРЫ И ЗАДАЧИ ДЛЯ АУДИТОРНОЙ РАБОТЫ 

 

16.1. Выразите краевое условие yxyyxu
Г 2

1
),( 22

−−= , где 

}:),{( 222 ρ=+= yxyxГ , в полярных координатах. 

 

16.2. Внутри единичного круга 10 ≤≤ r  найдите гармоническую функцию ),( ϕru

, принимающую на границе Г данного круга значения: 

πϕπϕ ≤≤−= ,2cos
Г

u . 

 

16.3. Внутри круга }:),{( 222 ρ<+= yxyxD  найдите гармоническую функцию 

),( yxu , принимающую на границе }:),{( 222 ρ=+= yxyxГ  следующие 

значения: 22
42 yxyxu

Г
−+= . 

 

16.4. Внутри единичного круга 10 ≤≤ r  найдите гармоническую функцию     

),( ϕru , принимающую на границе Г данного круга значения: 

πϕπϕπ ≤≤−−= ,
22

Г
u . 

 

16.5. Внутри круга }:),{( 222 ρ<+= yxyxD  найдите гармоническую функцию 

),( yxu , принимающую на границе Г данного круга следующие значения: 

ϕϕ 22
cossin BAu

Г
+= , где A  и B  - некоторые постоянные, а πϕπ ≤≤− . 

 

 

IV. ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ 

 

16.6. Выразите краевое условие xyxyxu
Г

42),( 2
−= , где }:),{( 222 ρ=+= yxyxГ , 

в полярных координатах. 
 

16.7. Внутри круга ρ≤≤ r0  найдите гармоническую функцию ),( ϕru , 

принимающую на границе Г данного круга значения: 
πϕπϕ ≤≤−= ,2sin

Г
u . 

 

16.8. Внутри круга }:),{( 222 ρ<+= yxyxD  найдите гармоническую функцию 

),( yxu , принимающую на границе }:),{( 222 ρ=+= yxyxГ  следующие 

значения: yxyu
Г

2

122
−−= . 
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ЗАНЯТИЕ № 17 

 

Тема: Итоговая контрольная работа 

 

Образец варианта письменного задания 

1. Является ли функция  решением дифференциального 

уравнения ? 

 

2. Решите дифференциальное уравнение  . 

 

3. Найдите общее и особые решения уравнения   

 

4. Найдите частное решение дифференциального уравнения , 

удовлетворяющее начальным условиям: . 

 

5. Решите задачу Коши:  . 

 

6. Найдите общее решение системы  

 

7. Приведите к канонической форме дифференциальное уравнение с 

постоянными коэффициентами 

                 . 

 

8. Закрепленная на концах струна оттянута в точке  на величину 

. Считая профиль струны слева и справа от точки  линейным, найти 

колебания струны, вызванные таким начальным отклонением. Начальная 

скорость равна нулю. 
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Раздел 4 
 

СПИСОК ЭКЗАМЕНАЦИОННЫХ ВОПРОСОВ 

И ОБРАЗЕЦ ПИСЬМЕННОГО ЗАДАНИЯ К ЭКЗАМЕНУ 

 

СПИСОК ЭКЗАМЕНАЦИОННЫХ ВОПРОСОВ 
 

1. Понятие дифференциального уравнения и его порядка. Определение 
решения обыкновенного дифференциального уравнения. 

2. Задача Коши для обыкновенного дифференциального уравнения 1-го 
порядка. Теорема Коши. 

3. Определение общего решения (общего интеграла) дифференциального 
уравнения . Понятие особого решения дифференциального 

уравнения. 
4. Линейные дифференциальные уравнения 1-го порядка. 
5. Уравнение Бернулли. 

6. Геометрическое истолкование дифференциального уравнения  
 и его решений.  

7. Метод изоклин решения дифференциальных уравнений вида 
. 

8. Уравнения в полных дифференциалах. 
9. Дифференциальные уравнения первого порядка с разделяющимися 

переменными. 

10. Дифференциальное уравнение , однородное относительно x 

и y.  

11. Дифференциальные уравнения 1-го порядка, не разрешенные 
относительно производной. 

12. Составление дифференциального уравнения 1-го порядка по его 
общему интегралу. 

13. Задача Коши и теорема Коши (без доказательства) для уравнений 

высшего порядка. 
14. Понятия общего и частного решений дифференциальных уравнений 

высшего порядка. 

15. Решение уравнений высших порядков вида . 

16. Уравнения высшего порядка, явно не содержащие независимой 

переменной. 

17. Уравнения высшего порядка, явно не содержащие искомой функции. 

18. Понятие линейного дифференциального уравнения высшего порядка. 
Теорема Коши для линейных дифференциальных уравнений 2-го порядка. 

),(' yxfy =

),(' yxfy =

),(' yxfy =

),(' yxfy =

)()( xfy n
=
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19. Однородные линейные уравнения 2-го порядка. Фундаментальная 
система решений.  

20. Построение общего решения однородных линейных уравнений 2-го 
порядка. 

21. Неоднородные линейные дифференциальные уравнения 2-го порядка. 
Структура общего решения.  

22. Отыскание частного решения неоднородного линейного уравнения 2-

го  порядка методом вариации произвольных постоянных. 
23. Интегрирование линейных дифференциальных уравнений при 

помощи степенных рядов. 
24. Однородные линейные уравнения 2-го порядка с постоянными 

коэффициентами. Характеристическое уравнение. Построение общего решения. 
25. Линейные неоднородные уравнения 2-го порядка с постоянными 

коэффициентами. Отыскание общего решения методом вариации произвольных 
постоянных. 

26. Решение уравнения  методом 

неопределенных коэффициентов.  

27. Решение уравнения  

методом неопределенных коэффициентов. 
28. Применение линейных дифференциальных уравнений к изучению 

колебательных движений. Свободные колебания и явление резонанса. 
29. Нормальная система дифференциальных уравнений. Задача Коши и 

теорема о существовании и единственности решения. 
30. Сведение дифференциальных уравнений n-го порядка к нормальной 

системе уравнений. 

31. Системы линейных дифференциальных уравнений 1-го порядка. 
Структура общего решения. 

32. Матричный метод решения систем линейных уравнений 1-го порядка. 
33. Решение однородных систем линейных дифференциальных 

уравнений с постоянными коэффициентами методом Эйлера. 
34. Дифференциальное уравнение с частными производными и понятие о 

его  общем решении.  

35. Квазилинейные (линейные) уравнения 2-го порядка с двумя 
независимыми переменными и их классификация. 

36. Приведение к канонической форме линейных дифференциальных 
уравнений в частных производных второго порядка с двумя переменными. 

37. Основные уравнения математической физики. Понятие о начальных и 

краевых условиях. 

)()exp(''' xPaxqypyy m⋅=++

[ ]bxxBbxxAaxqypyy nm sin)(cos)()exp('''' ⋅+⋅⋅=++
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38. Гиперболические уравнения. Задача о свободных колебаниях 
конечной струны и ее решение методом Фурье. 

39. Задачи Коши для однородного волнового уравнения на прямой и 

метод её решения. 
40. Понятие корректности постановки задач уравнений математической 

физики. 

41. Интегральные преобразования Фурье. 
42. Параболические уравнения. Решение задачи Коши для одномерного 

уравнения теплопроводности. Формула Пуассона. 
43. Уравнения эллиптического типа. Постановки основных задач. 
44. Гармонические функции на плоскости и их свойства. 
45. Задача Дирихле для гармонических функций двух переменных. 

Теорема единственности и устойчивости. 

46. Решение задачи Дирихле для круговых областей методом разделения 
переменных.  

 

Примечание. По мнению автора, экзамен по данному курсу желательно 
проводить в письменной форме. Ниже приводится образец варианта письменного 
задания для проведения семестрового экзамена по данному курсу. Предлагаемое 
задание рассчитано на то, что продолжительность экзамена составляет три часа. 

 

ОБРАЗЕЦ ПИСЬМЕННОГО ЗАДАНИЯ К ЭКЗАМЕНУ 
 

1. Задача Коши для обыкновенного дифференциального уравнения 1-го 
порядка. Теорема Коши. 

2. Решение задачи Коши для одномерного уравнения теплопроводности. 

Формула Пуассона. 

3. Решите дифференциальное уравнение  . 

4. Решите систему дифференциальных уравнений: 

                                      

5. Внутри круга  найдите гармоническую функцию , 

принимающую на границе Г данного круга значения: 

. 

  

xeyyy
x

ln44
2−

=+ʹ+ʹ́

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

−+=

+−=

++−=

.

,

,

zyx
dt

dz

zyx
dt

dy

zyx
dt

dx

ρ≤≤ r0 ),( ϕru

πϕπϕϕ ≤≤−+= ,2sinsin2
2

Г
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ОТВЕТЫ И УКАЗАНИЯ 

 

 
ЗАНЯТИЕ № 1 

 

1.1. б) и в).              1.3. 3)1(' =f , 4)1('' =f , 0)1(''' =f . 
 

1.4.  xy =  не является особым решением.       
 

1.5. а) 2

4

3
x ;          b) 1ln)(ln 2

=++ xyyx .     
 

1.6.  а) 09
2

=−+ yyx ;        б) x
ey

22
4

−
= ;              в) 

x
y

2
sin

1
= . 

 

1.7.  Да.          1.8.  а) и в).        1.10. а) 512
22
=+ yx ;   б) 5

0

∫ +=
x t

dt
t

e
y . 

 

 1.11. 
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ +−−−
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −−+−

6

37713
;

6

37713
,

6

37713
;

6

37713
),2;4(),4;2( 4321 AAAA . 

 
 

ЗАНЯТИЕ № 2 
 

2.1. а) 
2

2

4 x

Cx
y += ;     б) )sin(cos

2

1
xxCey

x
++=

−
.
25

 

 

2.2. а) 1
cos

+=
x

x
y ;      б) 1=y . 

 

2.4. 2sin2
sin

−−= yCex
y .        2.5. мин40 .    2.6. ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+=

−

1
t

L

k

e
R

kL

R

kt
i . 

 

2.7. 222222
22 yyxxeCy ++= .   2.8. 

42)(ln
4

1
xCxy +=  и 0)( =xy  - особое решение. 

 

2.9. 
2

)( 2 x
eCxy
−

+= .         2.10. а) )ln1(
1

xx
x

x
y ++

+
= ;       б) 

2
x

e5=y . 

 

2.11. 
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+= yCeyx

1

2
1 .            2.12. кг958,0 .  

 

2.13. 
xCx

y
ln1

1

++
= . 

                                                
25

 Здесь и всюду в дальнейшем, если не оговорено противное, то C  означает произвольную постоянную. 
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ЗАНЯТИЕ № 3 
 

3.1. а) M(2; 1);      b) M1(1; 3),  M2(3; 1).           3.3.  x
ey = .         

 

3.4. Два решения.                      3.5. 
322

Cxyx =+ .  
 

3.6. 
4

1
π

−=−
y

x
arctgx . Указание: использовать формулу 

2

1 π

α
α =+ arctgarctg . 

 

3.7. 222222 ,)( kxkxCky =− - коэффициент пропорциональности. 

 

3.8.  а) Cyex
y

=−
3 ;         б) Cxyx =sin . 

 

3.9.  333
22

=++ yyxxy . 
 

3.10. M1(2; 3),  M2(3; 2),  M3(-2; -3),  M4(-3; -2). 
 

3.12.  
2

1

2

1

x
xy ++= ,    

6
1

3

2

2

x
xxy +++= ,     

243
1

43

2

3

xx
xxy ++++= . 

 
 

ЗАНЯТИЕ № 4 
 

4.1.  ( )( ) C
y

x
yxyx =

−

+
+−−+

1

1
ln22 ;    1−=x   и 1=y   - особые решения.           

 

4.2. 1ln +−= xxxy .              4.3. ⎟
⎠

⎞
⎜
⎝

⎛
+

−
=+

42

πxy
ctgCx . 

 

4.4. а) Cy
y

x
=+ ||ln ;               b) ( ) 0,

2

1 22 >−= CCx
C

y . 

 

4.5. а) 222
ln2 xxxy += ;                  б) xarctgCxy 2= . 

 

4.6. -xyx,y,ln)(arcsin ==+= Cxxsign
x

y
.      4.7. 

xa

a
y

−
=

2

 (гипербола). 

 

 

4.8. а) x
eCy

2
1+= ;                  б) 3 2

33 xxCy −+= . 

 

4.9. 1sin2 −= xy .             4.10. а) Cx
y

x
=+ lnsin ;        б) 

Cx
xey

−
=

1
. 

 

4.11. ( ) x

y

xeCxyx =+ ln .           4.12. 2=+
y

x

yex .           4.13. 1−=xy . 
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ЗАНЯТИЕ № 5 
 

5.1. а) 
⎪⎩

⎪
⎨
⎧

==

++=

.0,

,)1(

2
yepy

Cpex

p

p

,              б) 
⎪
⎩

⎪
⎨

⎧

−=+

+−=

.
3

2

,22

23

2

ppCy

ppx

, 

 

5.2. а) 22 )()1( Cxyy −=− , особое решение 1=y ; 

б) 
C

Cey
x 1
+= ;    особые решения: 22 2,2

xx

eyey −== . 

 

5.3. а) 'xyy = ;           б) 0'2
22

=−+ xyyyx ;            в) 'ln' yyy = . 

 

5.4. а) 
( )

⎪⎩

⎪
⎨

⎧

=

+=+

.ln

,1ln
2

1 2

ppy

pCx
,              б) 

⎪⎩

⎪
⎨

⎧

++=+

+=

.cossin
2

1

,sin

2
ppppCy

ppx

, 

 

5.5.  )2(22
CyCx −= ;      особые решения: -2xy,2 == xy . 

 

5.6. а) y
x

y
y arcsin

1
'

2
−

= ;                  б) 1)1(' 2
=+xyxyy . 

 
 

ЗАНЯТИЕ № 6 
 

6.1. а) 
211

2

1 )ln()1( CxCCxCy +−++= ;             б) xx
eCeCy
−

+=
21

ln ;  

       в) 2

1
2

11
1)( CeCxCy

C

x

++=
+

    (здесь 
21, CC -произвольные постоянные). 

 

6.2. )1(
2

1 2
+= xy .                         6.3. )1(2sin

2

1
sin2 +−−= xxxy . 

 

6.4. а) 
32321

22
,0 CxCyCyCxCyx +==++++ ;        

 

       б) 
21

3

ln
6

CxCxx
x

y +++=   (здесь 
321

,, CCC  - произвольные постоянные). 

 

6.5. 1−=y .                 6.6. 1)1(
2

1
)1( 2

−−−−= xexey
x . 

 
ЗАНЯТИЕ № 7 

 

7.2. Линейно зависимы.        7.4. 0'2'' =+− yyy . 
 

7.6. а) 
xx

xeCeCy 2

1

2

2

1

1

−−

+= ;        б) 
x

exCC
xxx

y
2

21

22

4

3

2

ln −⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++−= , 

       ( здесь 
21

, CC -произвольные постоянные). 
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7.7.   ...
242

1

42

−−−=
xx

y  .         7.8. )0(
1

1

3
≠

−
xe

x

x
x .             7.10. 0'' =−yy . 

 

7.11. а) xx
xeCeCy

21
+= ;                б) 

12
cos CeCey

xx
++−=  

         (здесь 
21

, CC -произвольные постоянные). 
 

7.12.  )...
12

()...
6

1(
4

2

3

1 +−++−=
x

xC
x

Cy . 

 

ЗАНЯТИЕ № 8 
 

8.1. 02'3'' =++ yyy .           8.2. )2sin2cos( 21

3
xCxCey

x
+= . 

 

8.3. )73(2
xey

x
−= .          8.4. xx

eey
3

2

1

2

5
−= . 

 

8.5. 1) 
xx

exCxCey 5

3

21
5

3

16

25
)

5

4
sin

5

4
cos( ++= ; 

       2) xxxCxCey
x

5

4
cos

219

40

5

4
sin

219

15
)

5

4
sin

5

4
cos( 21

5

3

+++=  

          (здесь 
21

, CC -произвольные постоянные). 
 

8.6. ( ) xe
x

xCxCey
xx

2cos
4

2sin2cos
21

−+= . 

 

8.7. ( )xbxaxy 2cos2sin += , где  a, b  — некоторые числа. 
 

8.8. ( )xxxey
x

cossin −= . 
 

8.9. Дифференциальное уравнение 050
2

2

=+ gx
dt

xd
, если x отсчитывается от 

точки, где находится груз в состоянии покоя. Период колебания 

)(
2

550

2
сек

gg
T

ππ
== . 

8.10. 
xx

xeCeCy
2

21

−
+= .            7.11. 

x
ey

4
29

−
−= . 

 

8.12. Частное решение данного уравнения имеет вид: 

1) ⎟
⎠

⎞
⎜
⎝

⎛
−+++

125

908

25

107

5

36
2

5

1

13

1 222
xxxe

x ;           2) 
x

ex
5

3

cos
9

5
⋅− . 

 

8.13.  )sin4cos5(
41

)2sin2cos( 21 xx
e

xCxCey
x

x
−++=

−

, 

          где 
21

, CC -произвольные постоянные. 
 

8.14.  02'''3 =−− yyy . 
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ЗАНЯТИЕ № 9 
 

9.1.  а) 
⎪⎩

⎪
⎨
⎧

+=

+=

);3cos3sin(

),3sin3cos(

21

21

tCtCey

tCtCex

t

t

           б) 

⎪
⎪
⎩

⎪⎪
⎨

⎧

++−=

+++=

−−−

−−−

;
10

3

40

1

2

1

,
5

1

40

7

27

2

4

1

27

2

4

1

tttt

tttt

eeeCeCy

eeeCeCx

 

 

9.2.  
⎩
⎨
⎧

−=−

−=

.)()2(

,

23
yxxyy

yxz
       9.3.   

⎪⎩

⎪
⎨
⎧

−=

+=

−

−

.

,

21

21

xx

xx

eCeCz

eCeCy
                 

 

9.4.  а) 
⎪⎩

⎪
⎨
⎧

+−=

+=

;3

,

5

21

5

21

tt

tt

eCeCy

eCeCx
                      б) 

⎪⎩

⎪
⎨
⎧

⋅++−=

⋅++=

−

−

.

,

21

21

chttshteCeCy

shtteCeCx

tt

tt

  

 

9.5.  

⎪
⎪
⎩

⎪⎪
⎨

⎧

−=

=

.
3

,
3

t
y

t
x

                                                      9.6.  
⎪⎩

⎪
⎨
⎧

=

+=

.

,

22

211

x

xx

eCy

xeCeCy
           

 

9.7.  
⎪⎩

⎪
⎨
⎧

+⋅−+−=

+⋅++=

.coscoslnsincossin

,sincoslncossincos

21

21

xxxxxCxCz

xxxxxCxCy
 

 
 

ЗАНЯТИЕ № 10 
 

10.1.  а)
⎪⎩

⎪
⎨
⎧

+−=

+=

;3

,

5

21

5

21

tt

tt

eCeCy

eCeCx
       б)

⎪
⎪
⎩

⎪⎪
⎨

⎧

+−=

−++=

++=

.)(

,])2([

,)(

3

32

2

1

3
323

2
1

3
32

2
1

tt

tt

tt

etCCeCz

etCCCeCy

etCCeCx

 

10.2.  
⎩
⎨
⎧

−=

+=

.sin5

,sin2cos

xz

xxy
                                10.3.  

⎪
⎩

⎪
⎨

⎧

−=

−=

−=

−

−

−

.12

,1

,1

t

t

t

ez

ey

ex

 

 

10.4.  а) 
⎪⎩

⎪
⎨

⎧

+++−=

+=

;2sin)2(
5

1
2cos)2(

5

1

,2sin2cos

2121

21

tCCtCCy

tCtCx

 

 

           б)

⎪
⎪
⎩

⎪⎪
⎨

⎧

+−=

−=

++=

−

−

−

;5

,3

,

2

321

21

2

321

ttt

tt

ttt

eCeCeCz

eCeCy

eCeCeCx

                в)

⎪
⎪
⎩

⎪⎪
⎨

⎧

−−=

−=

−=

.

,

,

3

3

2

2

1

3

2

1

3

2

2

1

ttt

tt

tt

eCeCeCz

eCeCy

eCeCx
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10.5.  
⎪⎩

⎪
⎨
⎧

−=

−=

.2

,

32

32

xx

xx

eez

eey
             10.6.  ( )

( )⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

−=

+=

=

.sincos
2

1

,sincos
2

1

,cos

ttz

tty

tx

 

 
 

ЗАНЯТИЕ № 11 
 

11.2. 23

3

1
),( yxyxu += .      

 

11.3. a) )()(),( yxyxu ψϕ += , где )(xϕ  и )(yψ  – произвольные дважды 

дифференцируемые функции; 

б) )()(
6

1

2

1
),( 32

yxxxyxyxu ψϕ +++= , где )(xϕ  - произвольная дважды 

дифференцируемая функция переменной x , а )(yψ  – произвольная 
функция переменной y . 

 

11.4.  0),(23
2

=+
∂

∂
−

∂

∂
+

∂∂

∂
ηξ

ηξηξ
u

uuu
.   

 

11.5. 1
22
<− yx  – область гиперболичности, 1

22
=− yx  – область 

параболичности, 1
22
>− yx  – область эллиптичности. 

 

11.7. Cyyxxyyxyxu ++−+=
22222

4

1

2

1

2

1
),( , где C  – произвольная постоянная. 

 

11.8. )()(
4

1

3

1

3

1
),( 2233

yxyxxyyxyxu ψϕ ++−+= , где )(xϕ  и )(yψ  – 

произвольные дифференцируемые функции. 
 

11.9.  0),(8
2

2

2

2

=−
∂

∂
+

∂

∂
ηξ

ηξ
u

uu
. 

 

11.10. 1
22
>+ yx  – область гиперболичности, 1

22
=+ yx  – область 

параболичности, 1
22
<+ yx  – область эллиптичности. 

 

ЗАНЯТИЕ № 12 
 

 

12.1. a) )()(),( xyxyyyxu Ψ+Φ= , где Φ  и Ψ  – произвольные дважды 

дифференцируемые функции; 

б) )cos()cos()cos(),( xyxhxyxgxxyyxu −++−+−−= , где g  и h  – 

произвольные дважды дифференцируемые функции. 
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12.2. a) при 0=y  данное уравнение является параболическим и в этом случае 

имеет следующий канонический вид: 0
2

2

=
∂

∂

y

u
; при 0<y  оно является 

гиперболическим и имеет следующий канонический вид:  

0
)(6

12

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
+

∂

∂

+
+

∂∂

∂

ηξηξηξ

uuu
, где xyxy −−=+−=

33 )(
3

2
,)(

3

2
ηξ ; 

наконец, при 0>y  данное уравнение является эллиптическим и имеет  
следующий канонический вид: 

0
3

1

2

2

2

2

=
∂

∂
+

∂

∂
+

∂

∂

ξξηξ

uuu
, где xxy =+= ηξ ,

3

2 3 . 

 

б) данное уравнение является параболическим всюду, кроме начала 
координат (в начале координат оно вырождается), и имеет следующий 

канонический вид: 

0
12

2

2

2

2

=
∂

∂
−

∂

∂

−
+

∂

∂

ηηξηξ

η

η

uuu
, где xyx =+= ηξ ,

22 . 

 

в) на осях координат 0=x  и 0=y  данное уравнение является 
параболическим и в этом случае имеет следующий канонический вид: 

0
2

2

=
∂

∂

x

u
; при 0>x  0<y  и 0<x  0>y   оно является гиперболическим и 

имеет следующий канонический вид:  

0)2()2(
)(3

1
22

2

=⎥
⎦

⎤
⎢
⎣

⎡

∂

∂
−−

∂

∂
−

−
+

∂∂

∂

η
ξη

ξ
ηξ

ηξηξ

uuu
; 

наконец, при 0>x  0>y  и 0<x  0<y  данное уравнение является 
эллиптическим и имеет следующий канонический вид: 

0
3

11

2

2

2

2

=
∂

∂
+

∂

∂
−

∂

∂
+

∂

∂

ηηξξηξ

uuuu
. 

 

2.3.  а) 0

2

=
∂

∂
−

∂∂

∂

ηηξ

uu
;      б)   0

2

=
∂∂

∂

ηξ

u
. 

 
2.4. a) при 0=x  данное уравнение является параболическим и в этом случае 

имеет следующий канонический вид: 0
2

2

=
∂

∂

x

u
; при  0≠x  оно является 

гиперболическим и имеет следующий канонический вид:  

                           0
)(2

12

=
∂

∂

−
−

∂∂

∂

ξηξηξ

uu
, где yyx =+= ηξ ,

2 . 

 

б) данное уравнение является параболическим, если  0=x , 0≠y  или 0≠x

, 0=y , причем при 0=x , 0≠y  имеет следующий канонический вид: 
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0
2

2

2

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
+

∂

∂
+

∂

∂

y

u

x

u

yy

u
, а при 0≠x , 0=y :  0

2

2

2

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
+

∂

∂
+

∂

∂

y

u

x

u

xx

u
 (в начале 

координат уравнение вырождается);   данное уравнение гиперболическое, 
если 0>x , 0<y  или 0<x , 0>y , причем в этих областях имеет 
следующий канонический вид: 

    0
1

22

2

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
−

∂

∂

−
−

∂∂

∂

η
ξ

ξ
η

ηξηξ

uuu
; уравнение эллиптическое, если 0>x , 

0>y  или 0<x , 0<y , причем в этих областях имеет следующий 

канонический вид: 

                                       0
11

3
2

2

2

2

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
+

∂

∂
+

∂

∂
+

∂

∂

ηηξξηξ

uuuu
. 

 

в) на оси 0=x  данное уравнение является параболическим и в этом случае 

имеет следующий канонический вид: 0
2

2

=
∂

∂

y

u
;  при 0>x  оно является 

гиперболическим и имеет следующий канонический вид:  

0
)(2

12

=
∂

∂

−
+

∂∂

∂

ξηξηξ

uu
; 

наконец, при 0<x  данное уравнение является эллиптическим и имеет 
следующий канонический вид: 

0
1

2

2

2

2

=
∂

∂
−

∂

∂
+

∂

∂

ηηηξ

uuu
. 

 
 

ЗАНЯТИЕ № 13 
 

13.1.   
l

ax

l

at
Htxu

ππ 2
sin

2
cos),( ⋅⋅= . 

 

13.2.   

⎪
⎪

⎩

⎪
⎪

⎨

⎧

≥
−−

−

<

=

∑

∑
∞

=

∞

=

.
)12(

sin
)12(

sin
)12(

14

;sinsin
2

sinsin
14

),(

1
22

0

1
22

0

lhпри
l

xn

l

atn

na

lv

lhпри
l

xn

l

atn

l

nh

l

n

na

lv

txU

n

n

ππ

π

ππππ

π
 

 

13.3.   xnatnn
n

H
txu

n

πππ
π

sincos)cos1(
148

),(
1

55 ∑
∞

=

⋅⋅−= . 

 

13.4.   txtxu cossin),( ⋅= .                   13.5.   ⎟
⎠

⎞
⎜
⎝

⎛
+=

22

2

3
),( txttxu . 
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13.6.   ))()((
2

1
),( atxfatxftxu ++−= ,  где 

⎪
⎩

⎪
⎨

⎧

≤≤−+

≤≤−

≥

=

.0

;0

;0

)(

slприsl

lsприsl

lsпри

sf . 

 

13.7.   
l

xn

l

atnn

n

h
txu

n

πππ

ππ
sincos

4
sin

3

48
),(

1
2

⋅⋅⋅= ∑
∞

=

. 

 

13.8. 
l

xn

l

atn

lhnn

n

l

hn

a

hl
txu

n

ππ
ππ

π
sinsin

)(

2
sin

2
cos

4
),(

1
2222

2

⋅⋅
−

⋅
= ∑

∞

=

.     

 

13.9. 222)1(),( taxtxu +−= . 

 

13.10.   atx
a

txu sin)
4

cos(
2

),( ⋅−=
π

.        13.11.   x
aa

xu sin
1

)
2

,( =
π

. 

 
 

ЗАНЯТИЕ № 14 
 

14.1. αα
α

απ
dxxf ∫

+∞

⎟
⎠

⎞
⎜
⎝

⎛
⋅=

0

2 sin
2

sin
14

)( . Отсюда, полагая 
2

1
=x , 

2

α
ξ =  и учитывая 

1)5,0( =f , будем иметь: ( )
4

sin
1

0

3 π
ξξ

ξ
=∫

+∞

d . 

 

14.2.   ⎟
⎠

⎞
⎜
⎝

⎛
⋅−−= α

α
α

απ
α sin

1
cos

12
)(

i
F . 

 

14.3.   ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
−

+
=

22

2

2/122

0

4
exp

)4(
),(

hta

x

hta

hu
txU . 

 

14.4.    

,)
4

)(
exp()

4
exp(2)

4

)(
exp(

1

2

1

)
2

()1()
2

(
2

)
2

()1(
2

1
),(

222

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−+−−

+
−+

+⎟
⎠

⎞
⎜
⎝

⎛ −
Φ−−Φ−

+
Φ+=

t

lx

t

x

t

lxt

l

t

lx

l

x

t

x

l

x

t

lx

l

x
txU

π

. 

где µµ
π

dz

z

∫ −=Φ
0

2 )exp(
2

)(  – интеграл вероятностей. 

 

14.5.   ( ) ( ) αααα
α

αααα
α

dxxxf ∫
+∞

⎭
⎬
⎫

⎩
⎨
⎧

−+−+=
0

22
sinsin

1
cos1cossin2

1
)( . 
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14.6.   
α

π
α

i
F

+
=

1

2
)( . 

 

14.7. а) 0),( utxU = . Данное соотношение физически выражает тот факт, что 

количество теплоты остается неизменным с течением времени, так как 
стержень теплоизолирован от окружающей среды и теплота остается в 
стержне. 

 

 б) ⎟
⎠

⎞
⎜
⎝

⎛
Φ=

ta

x
utxU

2
),( 0

, где µµ
π

dz

z

∫ −=Φ
0

2 )exp(
2

)(  - интеграл вероятностей. 

 

14.8.  lxetxU
tl sin),(

2
−

= . 

 

ЗАНЯТИЕ № 15 

15.2.  а) Да;      б) Нет. 
 

15.3.  а) iCiezf z
+−=)( , где iyxz += , а C – действительная постоянная;    

          б) Cizzf +=
3)( , где iyxz += , а C – действительная постоянная. 

 

15.4.   izzzf ++=
2)( , где iyxz += . 

 

15.5.   Нет.           15.6.   Нет.     15.7.   а) Да;      б) Нет. 
 

15.8.  а) Ciezf iz
+=

2)( , где iyxz += , а C – действительная постоянная;    
          б) Cezf iz

+−=
−)( , где iyxz += , а C – действительная постоянная. 

 

15.9.   3)( zzf = , где iyxz += .              15.10.   Нет.           15.11.   Нет.     
 

 

ЗАНЯТИЕ № 16 
 

16.1.  ϕρϕρϕ
ρ

sin
2

1
2cos),( 2 −−=

=r
ru .                       16.2.  22),( yxyxu −= .          

        16.3.  )2sin2cos
2

5
(

2

3
),( 22 ϕϕρϕ ++−= rru .    

        16.4.  ϕπϕ nr

n

ru
n

n

n

cos
)1(

4
3

2
),(

1
2

1
2 ∑

∞

=

+−
+= .     

        16.5.  )(
22

),( 22
yx

BABA
yxu −

−
+

+
=

ρ
.           

        16.6.  )2sin(cos2),( 22 ϕϕρϕ
ρ

−=
=r

ru .   

        16.7.  xyyxu 2),( = .          16.8.  ϕϕϕ 2cossin
2

),( 2
r

r
ru −−= . 
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